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ABSTRACT

Transport collision integrals of interacting atoms or ions are essential in modeling transport properties of high-temperature gases and
plasmas. Here, we obtained the potential energy curves (PECs) of CH using the state-of-the-art ab initio methods. The PECs were also
extrapolated to investigate the transport collision integrals for C(3P)-H(2S), C(5S)-H(2S), C(1S)-H(2S), and C(1D)-H(2S) interactions, in
which the interactions between the excited C(5S), C(1S), and C(1D) atoms and the ground H(2S) atoms were calculated for the first time. The
resulting transport collision integrals were fitted to simple functional forms for ease of use in plasma modeling. Our transport collision inte-
grals can provide data references for computing transport properties of high-temperature plasmas involving C and H atoms.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0159596

I. INTRODUCTION

The methylidyne radical, CH, is formed in various astrophysical
environments.1 This radical was first detected in the laboratory as early
as 1918.2,3 The existence of the CH radical in the interstellar space was
first identified by Swings and Rosenfeld4 in 1937. Subsequently, CH
has been detected in the sun,5–8 stellar atmospheres,9,10 diffuse inter-
stellar bands,11–13 comets,14 interstellar medium,15,16 dust clouds,17–19

the diffuse interstellar clouds,20 dark clouds,21,22 stars,23 and extraga-
lactic galaxies.24

The CH plasmas have also attracted great attention in other
applications. For example, the methane-air plasma is a mixture con-
sisting of e/C/H/N/O.25 The CH plasma is closely linked with the criti-
cal fusion reactor design issue of tritium codeposition in tokamaks
with carbon as the wall material.26 The CH plasma can provide an
environment in modeling parametric instabilities excited by a single,
intense, wavelength-sized laser speckle.27 The CH plasma was chosen
as the standard ablator material for ignition capsules in National
Ignition Facility.28 Moreover, the CH plasma was widely used in laser–
plasma experiments because it is easy to deal with and to form into
special targets.29–31 Hence, investigating various properties of plasmas
including C and H is particularly important in applications mentioned
above, and the transport properties of plasmas, including viscosity,

thermal conductivity, electrical conductivity, and so on, are essential
for the study of plasma fluid dynamics. Solving the mass, momentum,
and energy equations, together with electromagnetic field equations,
depends on suitable transport properties.25,32,33 The transport proper-
ties can be calculated using the well-known Chapman–Enskog theory
based on transport collision integrals. For example, the viscosity in the
first-order approximation is given by34

g ¼ 5
16

ðpmkBTÞ1=2
pr2Xð2;2Þ� ; (1)

where kB is the Boltzmann constant, m is the mass of the molecule, r
is the collision diameter, r2Xð2;2Þ� is the reduced transport collision
integral, and T is the temperature. Therefore, the accuracy of transport
properties strongly relies on the reliability of transport collision
integrals.35,36

In the last few decades, great attention has been dedicated to
the calculation of transport collision integrals of high-temperature
species.37–39 The high-temperature environment can trigger different
types of interactions, including neutral–neutral,38,40–42 neutral–
ion,37,41–43 electron–neutral,41,42 and ion–ion44,45 interactions. The
high-temperature environment can also contribute to the formation of
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excited-state neutrals and ions. Determining the transport collision
integrals for these interactions relies on the underlying potential
energy curves (PECs).

There are currently three options for obtaining potential energies
in the calculation of transport collision integrals: the analytical poten-
tial functions determined from several spectroscopic parameters, the
ab initio potential energy points, and the analytical functions fitted
from ab initio points. Frequently used analytical potential energy func-
tions to calculate the transport collision integrals, such as Lennard–
Jones (LJ),46–51 m-6-8,52,53 Hulburt–Hirschfelder (HH),52,54–57

Murrell–Sorbie (MS),58 and modified morse (MM)59 potentials, rely
on the experimental spectroscopic data and can produce accurate
potential wells of PECs. However, there are questionable in the dissoci-
ated asymptotic and short-range regions, leading to uncertainty in the
resulting transport collision integrals. In addition, excited (in particu-
lar repulsive) states are thought to play an equally vital role in deter-
mining the transport collision integrals.45 Also, using a simple
exponential function to represent the repulsive curves is not appropri-
ate for the calculation of reliable transport collision integrals in a wide
temperature range.40 The problems mentioned above can be alleviated
using high-quality PECs. Therefore, precise PECs are needed to obtain
reliable transport collision integrals and to effectively predict transport
properties.

With the development of ab initio methods,60–63 the computa-
tional accuracy of PECs has improved significantly. Ab initio potential
energy data can be accepted as a baseline when experimental spectro-
scopic data are not available. Aziz et al.64 obtained the precise
transport properties and virial coefficients of helium based on the
state-of-the-art ab initio PECs in 1995. More recently, Buchowiecki
and Szab�o45 calculated the transport collision integrals for the H–Nþ,
N–Hþ, N2þ–H, and Nþ–Hþ interactions in the temperature range of
1000–60 000K using the interpolation and extrapolation of ab initio
potential energy points, simultaneously considering excited (in partic-
ular repulsive) states. The transport cross sections and integrated cross
sections are also reported by Buchowiecki65 for interactions of hydro-
gen and nitrogen atoms and ions (in the ground and excited states)
using extrapolated ab initio PECs. Ding et al.38 calculated transport
collision integrals for N(4S)–N(4S), N(4S)–N(2D), and N(4S)–N(2P)
interactions based on the combined-hyperbolic-inverse-power-repre-
sentation (CHIPR)66,67 PECs obtained from fitting ab initio points.
The CHIPR method is detailed in previous publications68–76 and can
obtain reasonable behaviors for ab initio potential energy points.
Therefore, the CHIPR method needs sufficient ab initio potential
points covering theoretically reasonable internuclear distances for
accurately calculating the cross sections and transport collision inte-
grals. The CHIPR method can give nearly the same transport collision
integrals as those from the interpolation and extrapolation of ab initio
potential energy points, but this method may cost huge time on fitting
PECs for all the electronic states. Therefore, using the interpolation
and extrapolation of ab initio potential energy points is a good choice
for highly accurate calculations of transport collision integrals.45

As early as 2006, Sourd et al.25 determined the transport proper-
ties of e/C/H/N/O mixtures in the temperature range of 9000–
20 000K, including C(3P)–H(2S) interaction. Sanon and Baronnet77

calculated the transport collision integrals for the thermal plasma com-
posed of Ar/C/H/O/N in the temperature range from 1000 to
15 000K. More recently, transport properties for neutral C, H, N, O,

and Si-containing species and mixtures were studied by Bellas
Chatzigeorgis et al.,35 considering the CH molecule. However, previ-
ous studies only focused on the interaction between the ground C(3P)
and H(2S) atoms and did not provide the collision integral data for
CH. The interactions between the atomic ground and excited states
are also of paramount importance at high temperatures, which mainly
results from the fact that the importance of the excited atoms depends
on their numbers, which increase with increasing temperature.45

Taking above into consideration, we, therefore, revisit the trans-
port collision integrals for C(3P)–H(2S) interaction using the state-of-
the-art ab initio PECs, as well as the interactions between the excited
C(5S), C(1S), and C(1D) atoms and the ground H(2S) atoms, which are
considered for the first time. Section II provides the methods for com-
puting the PECs and transport collision integrals. Section III discusses
the results of the PECs and transport collision integrals. Finally, a con-
clusion is drawn in Sec. IV.

II. THEORY ANDMETHODS
A. Ab initio calculations of potential energy curves

In this work, PECs of ten electronic states, including the A 2D, E
2P, X 2P, C 2Rþ, D 2Rþ, B 2R�, c 4R�, b 4P, a 4R�, and d 6R� states,
correlating to the first four dissociation channels of the CH radical
were calculated with the MOLPRO 2015 quantum chemistry pack-
age.78,79 The PECs are obtained using the state-averaged complete
active space self-consistent field (SA-CASSCF) approach,80,81 followed
by internally contracted multireference configuration interaction with
the Davidson correction (icMRCIþQ),82–85 which is widely used to
study PECs of diatomic molecules.38,86–90 The calculation is performed
in the largest Abelian subgroup (C2t) because MOLPRO cannot deal
with the symmetry of the non-Abelian (C1t) symmetry. The irreduc-
ible representation of the C2t point group is (A1, B1, B2, A2), and its
corresponding relationship to C1t point group can be described as
follows: Rþ !A1, R

� ! A2, P ! (B1, B2), and D ! (A1, A2). The
aug-cc-pwCV5Z-DK basis set91 is selected for the C atom, and the
aug-cc-pV5Z basis set is selected for the H atom. The PECs of the
quartet and sextet electronic states were computed at the internuclear
distances from 0.4 to 9.5 Å with step sizes of 0.05 Å for 0.4–1.2 Å,
0.02 Å for 1.2–2 Å, 0.05 Å for 2–4 Å, 0.1 Å for 4–5 Å, and 0.5 Å for 5–
9.5 Å, and those for the doublet electronic states were computed at the
internuclear distances from 0.44 to 10 Å with step sizes of 0.02 Å for
0.44–2 Å, 0.05 Å for 2–4 Å, 0.1 Å for 4–5 Å, and 0.5 Å for 5–10 Å.

For the calculation of transport collision integrals, ab initio PECs
are needed to be extrapolated over the short and long ranges of inter-
nuclear distance R. In this work, the PECs are extrapolated by the fol-
lowing function for the short-range region:

VðRÞ ¼ A exp ð�BRÞ þ C; (2)

where A, B, and C are fitting parameters and are determined from ab
initio energies calculated using at least three different ab initio poten-
tial energy values for R in the short-range region, which are usually
potential energy points corresponding to three minimum internuclear
distances. The cubic spline was used to interpolate the ab initio points.
To ensure continuous and smooth PECs, the long-range region can be
extrapolated by the following function:

VðRÞ ¼ �C5

R5
� C6

R6
þ VðR ! 1Þ; (3)
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where C5 and C6 are state-dependent coefficients, which were esti-
mated by fitting ab initio points in this work.

We should note that ab initio potential energy points calculated
in this work have covered a wide range of internuclear distances. The
maximum potential energies at the minimum internuclear distance for
all the electronic states considered here are more than 1.5 Hartree
above their dissociation limits, which will remarkably reduce the error
of transport collision integrals due to the extrapolation of the ab initio
potential energy points and enable accurate calculation of transport
collision integrals. About the extrapolation of Eq. (1), previous
works92,93 compared the potential energies determined from different
ab initio levels of theory with those fitted by Eq. (1). The results show
that Eq. (1) is seen to be an excellent function for fitting the potential
energies with the root mean square (RMS) errors of the order of 0.1
mEh for the calculated potential energies using a variety of ab initio
methods, including the restricted Hartree–Fock (RHF) SCF, the
second-order M�ller–Plesset perturbation theory (MP2), and
CASSCF/internally contracted CI method. The error of the potential
energies obtained from the complete basis set (CBS) model theory

proposed by Petersson et al.94,95 reaches 0.28 mEh. These results veri-
fied the validity of Eq. (1). For the extrapolation of Eq. (2), previous
studies96,97 show that the long-range interaction potential between two
neutral atoms of the separation R can be expressed as a power series in
1/R and Eq. (2) is just from Eq. (1) of the paper from Yan et al.97 The
first two terms in Eq. (1) of the paper from Yan et al.97 are thought to
be the most important. Of course, C5 and C6 can be obtained using the
theories of long-range interaction potentials.98 In this work, C5 and C6

were estimated by fitting ab initio potential energy points while keep-
ing the dissociation limits fixed, just as done in previous studies.99,100

TABLE I. Statistical weights of the electronic states of CH.

State wi State wi

2Rþ 2/30 4Rþ 4/30
2R� 2/30 4P 8/30
2D 4/30 6R� 6/30

TABLE II. Electronic states of CH and their corresponding dissociation limits.

Dissociation limit Molecular electronic states

C(5S)–H(2S) c 4R�, d6R�

C(1S)–H(2S) D 2Rþ

C(1D)–H(2S) C 2Rþ, E 2P, A 2D
C(3P)–H(2S) X 2P, B 2R�, b 4P, a4R�

FIG. 1. Potential energy curves of CH calculated by the icMRCI method with the
aug-cc-pwCV5Z-DK basis set for the C atom and the aug-cc-pV5Z basis set for the
H atom.

FIG. 2. Comparison of the PECs for CH
correlating to the C(3P)–H(2S) dissociation
limit relative to the lowest point of the
ground state with those from (a) Refs.
107–109, (b) Refs. 110 and 111.
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Such treatment can ensure a smooth transition between ab initio
potential points and the extrapolated potential energies.

B. Calculation of the transport collision integrals

The deflection angle of scattering atoms interacting with poten-
tial energy V(R) is expressed as follows:101

vðb; cÞ ¼ p� 2b
ð1
rc

dR= R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=R2 � VðRÞ= kBTc2ð Þ

q� �
; (4)

where b is the impact parameter, rc is the distance of the closest
approach, R is the internuclear distance, c2¼ lg2/(2kBT), l is the
reduced mass, and g is the relative velocity. Given the deflection angle v
for an impact parameter b, the collision cross section can be obtained by

QlðcÞ ¼ 2p
ð1
0

1� coslvðb; cÞ
� �

bdb: (5)

Reduced transport collision integral is the ratio of the transport
collision integral using a particular energy model divided by the rigid
sphere model value,34,40,45,51,102,103

r2Xðl;sÞ� ¼ 2

pðsþ 1Þ! 1� 1þ ð�1Þl
2ð1þ lÞ

" # ð1
0
e�c2c2sþ3QlðcÞdc; (6)

where (l,s) is the order of the transport collision integrals. If two
particles interact according to more than one PEC, then the transport
collision integral is defined as the weighted average,

FIG. 3. Comparison of the PECs for CH
dissociating to the C(1D)–H(2S) asymptote
relative to the lowest point of the ground
state with those from (a) Refs. 107–109,
(b) Refs. 110 and 111.

FIG. 4. Comparison of the PECs for CH relating to the C(1S)–H(2S) dissociation
limit relative to the lowest point of the ground state with those from Refs. 109
and 111.

FIG. 5. Comparison of the PECs for CH for the C(5S)–H(2S) dissociation limit rela-
tive to the lowest point of the ground state with those from Ref. 109.
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r2Xðl;sÞ�
av ¼

X
i

wir
2Xðl;sÞ�

iX
i

wi

; (7)

where wi are the statistical weights according to molecular term sym-
bols104–106 and listed in Table I. r2Xðl;sÞ�

i is the reduced transport colli-
sion integral associated with every dissociation limit at the ith
electronic state.

III. RESULTS AND DISCUSSION

Ten electronic states of CH and their corresponding dissociation
limits are shown in Table II. Figure 1 shows the computed PECs of
these ten electronic states. At the C(3P)–H(2S) dissociation limit, there
exist four electronic states, including X 2P, B 2R�, b 4P, and a 4R�

states. It is worth noting that the b 4P state is repulsive, while X 2P, B
2R�, and a 4R� states have potential wells of varying depths. At the C

(1D)–H(2S) dissociation limit, both C 2Rþ and A 2D states have poten-
tial wells, whereas the E 2P state has a potential well and a potential
barrier above its dissociation limit. There only has one electronic state
at the C(1S)–H(2S) dissociation limit, namely, the D 2Rþ state, which
has a shallow potential well. At the C(5S)–H(2S) dissociation limit, the
c 4R� state has a potential well and the d 6R� state is repulsive.

In order to verify the reliability of our ab initio data, compari-
sons between our PECs correlating to the first four dissociation
channels of the CH radical and those computed by other researchers
are shown in Figs. 2–5. Solid lines represent our PECs calculated
using the icMRCI method with the aug-cc-pwCV5Z-DK basis set for
the C atom and aug-cc-pV5Z basis set for the H atom. Dashed lines
represent the PECs calculated by Abdallah et al.107 using the multi-
reference configuration interaction (MRCI) method with the aug-cc-
pVQZ basis set. Short dotted lines stand for the PECs computed by
Billoux et al.108 using the Rydberg–Klein–Rees (RKR) inversion
method. Triangular symbols are the PECs calculated by Kalemos

FIG. 6. Transport collision integrals of (a)
C(3P)–H(2S), (b) C(1D)–H(2S), (c) C(1S)–
H(2S), and (d) C(5S)–H(2S) interactions.
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et al.109 using the MRCI method with the cc-pVQZ basis set for
the H atom and cc-pV6Z basis set for the C atom. Double dotted
lines represent the PECs computed by Song et al.110 using spin–orbit
multiconfiguration quasi-degenerate perturbation theory (SO-
MCQDPT). Circular symbols are the PECs calculated by Chakrabarti
et al.111 using the R-matrix method.

The PECs of A 2D, X 2P, C 2Rþ, D 2Rþ, B 2R�, c 4R�, a 4R�,
and d 6R� states are in excellent agreement with previous calcula-
tions107–111 except for the X 2P, B 2R�, C 2Rþ, and A 2D states in
short-range regions obtained by Billoux et al.108 using the RKR inver-
sion method, which uses the extrapolation of analytical functions in
the short-range and long-range regions, leading to uncertainty in their
results. There are notable differences between our PECs of the E 2P
and b 4P states and those computed by Kalemos et al.109 as shown in
panel (a) of Figs. 2 and 3, which may result from the different basis
sets adopted. Compared with the cc-pVQZ basis set and cc-pV6Z
basis set, the aug-cc-pwCV5Z-DK basis set and aug-cc-pV5Z basis set
are augmented with diffuse functions. The aug-cc-pwCV5Z-DK basis
set is also optimized with respect to the core-valence correlation
energy and a small weight of core-core correlation energy and describe
scalar relativistic effects using the spin-free, one-electron Douglas–
Kroll–Hess (DKH) Hamiltonian. Overall, our ab initio PECs of CH
are reliable.

The obtained PECs of CH were extrapolated using Eqs. (1) and
(2) to calculate the transport collision integrals of C(5S)–H(2S), C
(1S)–H(2S), C(1D)–H(2S), and C(3P)–H(2S) interactions over the
temperature range of 500–50 000K. The obtained transport collision
integrals of C(5S)–H(2S), C(1S)–H(2S), and C(1D)–H(2S) interactions
are shown in Fig. 6, and all transport collision integrals decrease with
increasing temperature over the whole temperature range considered
here. As shown in panelVC of Fig. 6, transport collision integrals of C
(1S)–H(2S) interaction exhibit sharp variations before about 5000K,
then change slowly, and all those lines are more concentrated, which
is probably because the C(1S)–H(2S) dissociation limit only has one
electronic state. Detailed data on the transport collision integrals over
the temperature range of 500–50 000K are given in the supplemen-
tary material. The resulting transport collision integrals were fitted to
simple functional forms in the Appendix for ease of use in plasma
modeling,

fr2Xðl;sÞ� ðTÞ ¼ A1 þ B1T þ C1T
2 þ DT3 þ ET4 þ F=T þ G=T2;

(8)

where A1, B1, C1, D, E, F, andG are fitting parameters.
Assuming the C and H atoms in a mixture of plasma are in ther-

modynamic equilibrium and their numbers in ground and excited
states satisfies the Boltzmann distribution equation. Carbon atoms in
ground and excited states as a proportion of the total number of car-
bon atoms can be estimated at a temperature of T,

ni ¼ nT
gi

ZðTÞ e
�Ei=kBT ; (9)

where ni is the number density of ith atomic excited state, gi is the
degeneracy of ith atomic excited state, Ei is the energy of ith atomic
excited state, nT is the total number density of atomic carbon, and Z
(T) is the electronic partition function of atomic carbon. Figure 7
shows the proportion of the ground and excited C atoms relative to

the total number of carbon atoms. At 50 000K, the number of carbon
atoms in the first excited state constitutes 15% of the total carbon
atoms (n1¼ 0.15nT) and the number of carbon atoms in the second
excited state is the 5% of the total carbon atoms (n2¼ 0.05nT).
Moreover, the number of carbon atoms in the third excited state
accounts for 20% of the total carbon atoms (n3¼ 0.20nT). Given the
considered temperature range, the excitation of hydrogen atoms can
be ignored. Based on the predicted numbers of C in ground and
excited states, the percentages of each order of transport collision inte-
grals for C(3P)–H(2S), C(1D)–H(2S), C(1S)–H(2S), and C(5S)–H(2S)
interactions at several temperatures are then computed and presented
in Table III. As shown in Table III, for the transport collision integrals
of the same order, the sum of the percentages of them for the four
interactions at the same temperature is considered as 100%. For exam-
ple, the percentages of the contributions of transport collision integrals
r2X(1)� for C(3P)–H(2S), C(1D)–H(2S), C(1S)–H(2S), and C(5S)–H(2S)
interactions at 50 000K are 61.04%, 11.90%, 3.36%, and 23.70%,
respectively, whose sum is 100%. The percentages of all orders of the
transport collision integrals considered in this work for the C(3P)–H
(2S) interaction decrease with increasing temperature. For example,
the percentage of transport collision integrals r2X(1)� for C(3P)–H(2S)
interaction drops from 100% at 500K to 61.04% at 50 000K. The per-
centages of all orders of the transport collision integrals considered in
this work for C(1D)–H(2S), C(1S)–H(2S), and C(5S)–H(2S) interactions
increase with increasing temperature. For example, the percentage of
transport collision integrals r2X(2,3)� for the C(5S)–H(2S) interaction
increases from 0% at 500K to 25.28% at 50 000K. Therefore, transport
collision integrals of the interactions between the atomic ground and
excited states should not be ignored in plasma modeling at high
temperatures.

IV. CONCLUSIONS

In this work, we have carried out a comprehensive theoretical
investigation of the transport collision integrals for the C(5S)–
H(2S), C(1S)–H(2S), C(1D)–H(2S), and C(3P)–H(2S) interactions

FIG. 7. Carbon atoms in ground and excited states as a percentage of the total
number of carbon atoms.
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based on the extrapolated ab initio PECs of ten electronic states
over the temperature range of 500–50 000 K. We obtained the PECs
of CH using the icMRCIþQ method with the aug-cc-pwCV5Z-DK
basis set for the C atom and aug-cc-pV5Z basis set for the H atom,
which were also compared with those computed by other research-
ers to verify the reliability of our ab initio data. The interactions
between the excited C(5S), C(1S), and C(1D) atoms and the ground
H(2S) atoms were considered for the first time. The resulting trans-
port collision integrals were also fitted to simple functional forms
for convenience in plasma modeling applications. Moreover, the
results indicate that only considering the transport collision inte-
grals for the C(3P)–H(2S) interaction is insufficient because the
interactions between the atomic ground and excited states cannot
be ignored at high temperatures. Overall, our PECs of CH are reli-
able. The resulting transport collision integrals are of importance

for computing transport properties of high-temperature plasmas
involving C and H atoms and will be also of significant interest in
plasma physics and astrophysics.

SUPPLEMENTARY MATERIAL

See the supplementary material for details of transport collision
integrals.
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TABLE III. The percentages of each order of transport collision integrals (in unit of %) for C(3P)–H(2S), C(1D)–H(2S), C(1S)–H(2S), and C(5S)–H(2S) interactions at several tem-
peratures assuming the C and H atoms in a mixture of plasma are in thermodynamic equilibrium.

T (K) r2X(1,1)� r2X(1,2)� r2X(1,3)� r2X(1,4)� r2X(2,2)� r2X(2,3)� r2X(2,4)� r2X(3,3)�

C(3P)–H(2S)
500 100 100 100 100 100 100 100 100
5000 98.60 98.61 98.63 98.63 98.49 98.50 98.53 98.56
10 000 93.72 93.75 93.70 93.59 93.43 93.58 93.67 93.55
20 000 82.53 81.76 80.83 79.99 82.36 81.97 81.37 81.88
30 000 72.96 71.32 69.99 69.12 72.70 71.52 70.42 71.72
40 000 65.99 64.07 62.91 62.32 65.51 64.07 63.03 64.43
50 000 61.04 59.22 58.33 58.01 60.37 59.03 58.24 59.42

C(1D)–H(2S)
500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5000 1.37 1.36 1.35 1.35 1.48 1.47 1.45 1.41
10 000 5.31 5.29 5.30 5.34 5.55 5.43 5.34 5.44
20 000 9.59 9.70 9.92 10.20 9.58 9.53 9.60 9.64
30 000 11.05 11.31 11.67 12.02 10.88 11.00 11.23 11.08
40 000 11.63 11.99 12.40 12.78 11.40 11.64 11.95 11.67
50 000 11.90 12.34 12.78 13.14 11.66 11.99 12.35 11.99

C(1S)–H(2S)
500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5000 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02
10 000 0.30 0.29 0.30 0.33 0.30 0.29 0.29 0.30
20 000 1.28 1.45 1.65 1.84 1.24 1.34 1.48 1.37
30 000 2.17 2.53 2.87 3.13 2.10 2.36 2.61 2.35
40 000 2.85 3.33 3.70 3.97 2.78 3.13 3.44 3.10
50 000 3.36 3.90 4.28 4.54 3.30 3.70 4.02 3.65

C(5S)–H(2S)
500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5000 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
10 000 0.67 0.67 0.70 0.74 0.72 0.70 0.70 0.71
20 000 6.59 7.09 7.60 7.97 6.82 7.16 7.55 7.11
30 000 13.82 14.84 15.47 15.73 14.32 15.12 15.74 14.85
40 000 19.53 20.61 20.99 20.93 20.31 21.16 21.58 20.80
50 000 23.70 24.54 24.61 24.31 24.67 25.28 25.39 24.94
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scientific calculations in this paper have been done on the HPC
Cloud Platform of Shandong University.
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APPENDIX: THE FITTING PARAMETERS TO THE
TRANSPORT COLLISION INTEGRALS

The fitting parameters to the transport collision integrals in
Eq. (8) for the C(3P)–H(2S), C(1D)–H(2S), C(1S)–H(2S), and C(5S)–
H(2S) interactions over the temperature range of 500–50 000K are
shown in Tables IV, V, VI, and VII, respectively. All the fitted func-
tional forms deviate from the calculated data by less than 5%. The
temperature ranges in which the fitting errors of the transport colli-
sion integrals for the C(3P)–H(2S), C(1D)–H(2S), C(1S)–H(2S), and
C(5S)–H(2S) interactions are less than 1% are shown in Table VIII.

TABLE IV. The fitting parameters to the transport collision integrals for the C(3P)–H(2S) interaction.

A1 (Å
2) B1 (10

�4 Å2/K) C1 (10
�9 Å2/K2) D (10–16 Å2/K3) E (10–19 Å2/K4) F (Å2 K) G (Å2 K2)

fr2Xð1;1Þ� ðTÞ 5.6557 �3.770 65 13.0892 �2244.22 14.9325 2315.64 �192 619
fr2Xð1;2Þ� ðTÞ 5.495 98 �4.690 61 19.0848 �3627.6 25.8591 1797.35 �175 230
fr2Xð1;3Þ� ðTÞ 5.3267 �5.455 63 24.9795 �5129.62 38.5394 1573.89 �172 864
fr2Xð1;4Þ� ðTÞ 5.071 96 �5.918 21 29.3654 �6343.95 49.2974 1592.92 �224 183
fr2Xð2;2Þ� ðTÞ 5.1929 �2.049 49 3.062 56 �2.146 98 �2.509 25 3163.9 �389 500
fr2Xð2;3Þ� ðTÞ 5.087 05 �2.431 73 4.252 05 �44.2275 �3.580 31 2608.2 �318 794
fr2Xð2;4Þ� ðTÞ 5.1435 �3.126 64 8.079 06 �817.979 1.841 12 2057.02 �200 683
fr2Xð3;3Þ� ðTÞ 5.620 35 �4.469 38 18.3305 �3596.31 26.5335 2300.53 �287 826

TABLE V. The fitting parameters to the transport collision integrals for the C(1D)–H(2S) interaction.

A1 (Å
2) B1 (10

�4 Å2/K) C1 (10
�9 Å2/K2) D (10�14 Å2/K3) E (10�19 Å2/K4) F (Å2 K) G (Å2 K2)

fr2Xð1;1Þ� ðTÞ 3.772 65 �2.414 49 7.986 43 �12.7955 7.903 74 2237.61 96 272
fr2Xð1;2Þ� ðTÞ 3.831 18 �3.322 88 13.8733 �26.7245 19.1694 1382.3 2717.2
fr2Xð1;3Þ� ðTÞ 3.788 74 �3.994 24 18.9969 �39.9724 30.5075 1052.98 50 519.3
fr2Xð1;4Þ� ðTÞ 3.625 36 �4.346 52 22.3806 �49.5244 39.0945 1031.07 �26 851.4
fr2Xð2;2Þ� ðTÞ 3.905 17 �1.544 22 1.441 77 3.888 49 �6.223 33 2519.63 124 282.2
fr2Xð2;3Þ� ðTÞ 4.115 23 �2.434 48 6.391 03 �6.651 09 1.635 52 1595.66 172 720
fr2Xð2;4Þ� ðTÞ 4.329 57 �3.385 55 12.4774 �21.1096 13.364 942.655 242 033
fr2Xð3;3Þ� ðTÞ 3.999 16 �3.106 66 12.293 �23.0519 16.3143 1739.39 66 340.2

TABLE VI. The fitting parameters to the transport collision integrals for the C(1S)–H(2S) interaction.

A1 (Å
2) B1 (10

�4 Å2/K) C1 (10
�9 Å2/K2) D (10�14 Å2/K3) E (10�19 Å2/K4) F (Å2 K) G (106 Å2 K2)

fr2Xð1;1Þ� ðTÞ 2.299 01 �2.936 03 16.9587 �40.3982 33.4956 5050.38 �1.090 35
fr2Xð1;2Þ� ðTÞ 1.061 79 �1.325 93 8.429 41 �21.2192 18.1884 5339.44 �1.212 44
fr2Xð1;3Þ� ðTÞ 0.270 891 �0.088 816 2 1.210 29 �4.0601 4.004 27 5318.47 �1.192 21
fr2Xð1;4Þ� ðTÞ �0.163 861 0.685 235 �3.615 54 7.835 86 �6.055 61 5018 �1.071 89
fr2Xð2;2Þ� ðTÞ 3.525 31 �4.611 45 26.3998 �62.4165 51.4752 4455.59 �0.968 647
fr2Xð2;3Þ� ðTÞ 2.403 27 �3.306 43 20.0741 �49.102 41.363 5067.29 �1.205
fr2Xð2;4Þ� ðTÞ 1.401 63 �1.875 58 12.1616 �30.8938 26.6267 5649.45 �1.401 58
fr2Xð3;3Þ� ðTÞ 1.723 04 �2.158 84 12.8918 �31.2946 26.2382 5250.5 �1.171 48
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