High-temperature partition functions, specific heats and spectral radiative properties of diatomic molecules with an improved calculation of energy levels

Z. Qina, J.M. Zhaoa, L.H. Liua,b,∗

aSchool of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
bSchool of Energy and Power Engineering, Shandong University, Qingdao 266277, China

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 26 January 2018
Revised 5 February 2018
Accepted 5 February 2018
Available online 6 February 2018

\textbf{Keywords:}
Diatomic molecules
Non-equilibrium
Partition function
Thermodynamic properties
Spectral radiative properties

\textbf{A B S T R A C T}

The level energies of diatomic molecules calculated by the frequently used Dunham expansion will become less accurate for high-lying vibrational and rotational levels. In this paper, the potential curves for the lower-lying electronic states with accurate spectroscopic constants are reconstructed using the Rydberg–Klein–Rees (RKR) method, which are extrapolated to the dissociation limits by fitting of the theoretical potentials, and the rest of the potential curves are obtained from the ab-initio results in the literature. Solving the rotational dependence of the radial Schrödinger equation over the obtained potential curves, we determine the rovibrational level energies, which are then used to calculate the equilibrium and non-equilibrium thermodynamic properties of \(N_2\), \(N_2^*\), NO, \(O_2\), CN, \(C_2\), CO and \(CO^+\). The partition functions and the specific heats are systematically validated by available data in the literature. Finally, we calculate the radiative source strengths of diatomic molecules in thermodynamic equilibrium, which agree well with the available values in the literature. The spectral radiative intensities for some diatomic molecules in thermodynamic non-equilibrium are calculated and validated by available experimental data.

© 2018 Elsevier Ltd. All rights reserved.

\textbf{1. Introduction}

The partition functions are key to the calculation of the energy level populations of high-temperature gases produced in Earth and Mars atmospheric entry [1,2]. And the energy level populations are input parameters in the calculation of the spectral radiative properties of high-temperature gases in equilibrium and local non-equilibrium systems [1]. The obtained spectral radiative properties can be used to predict the atmospheric radiative transfer [3] and the radiative heat flux of aircraft surface caused by shock waves in atmospheric entries [4]. Moreover, the partition functions can also be used to calculate the thermodynamic properties, which are required in the calculation of the aerothermodynamic flow field [5–8].

Strong shock waves can be formed in front of the vehicles during hypersonic flights, which translate part of the kinetic energy of the vehicles into the internal energy of gases. As a result, the gas temperature rises precipitously, leading to the non-equilibrium between the vibrational and rotational modes for molecular components. However, the excitation of different energy modes will not occur at the same time, making it difficult to adopt a single temperature to accurately describe the thermal non-equilibrium phenomenon among different energy modes. To simplify the problem, Lee [9] and Park [10] assumed that various energy modes can be separated by the corresponding temperatures, known as the multi-temperature model. For instance, the frequently used two-temperature model uses \(T_i\) to represent the temperature of the rotational and translational energy levels with a Boltzmann and Maxwell distribution, and uses \(T_v\) to represent the temperature of the electronic and vibrational energy levels with Boltzmann distributions (shown in Fig. 1). Recently, the state-to-state model becomes more and more popular due to the availability of the ever-increasing ab-initio rate parameters for the elementary collisional processes. It was shown that the state-to-state model can predict better the number densities of the species in high-temperature non-equilibrium reacting flows [11–13], in which different vibrational temperatures are introduced for each corresponding molecule and even for each electronic state of the same molecule. For these two non-equilibrium models, the thermodynamic and spectral radiative properties of high-temperature gases cannot be described using one temperature. Instead, the rovibrational interaction energy should be divided into multiple parts with the cor-

\∗ Corresponding author.
\textit{E-mail} addresses: jlli@hit.edu.cn, liulinhua@sdu.edu.cn (L.H. Liu).

https://doi.org/10.1016/j.jqsrt.2018.02.004
0022-4073/© 2018 Elsevier Ltd. All rights reserved.
responding temperatures. Hence, Jaffe et al. [5] proposed the two limiting cases to split the rovibrational internal energy based on the two-temperature model. This method is the starting point to resolve the non-equilibrium thermodynamic and spectral radiative properties, which can also be generalized to the multi-temperature and state-to-state models if the summation over each internal energy mode is performed for its own temperature.

As required in the study of the plasma flow for atmospheric entry, a large amount of data of the partition functions, the thermodynamic and spectral radiative properties for high-temperature gases have been calculated over the past few years. For the partition functions and thermodynamic properties, Dremlishak et al. [14,15] calculated the equilibrium chemical composition and the thermodynamic properties of argon, nitrogen and oxygen plasma for temperatures as high as 35000K. In order to derive the entropy and enthalpy of gas mixtures for the calculation of non-equilibrium flow field, Jaffe [5] proposed a scheme for partitioning the internal energy into vibrational, rotational and electronic parts, in which two extreme cases of splitting the rovibrational interaction energy are considered. With the aid of this scheme, the two-temperature energies of N2, O2 and NO were found to be insensitive to the two extreme cases [5]. Employing the two-temperature partitioning scheme, Babou et al. [2] calculated the two-temperature internal partition functions, internal energies, vibrational and rotational specific heats of N2, N2°, NO, O2, CN, C2, CO and CO° from 1000 to 50000 K. McBride et al. [16] reported a library of thermodynamic data of more than 2000 individual species, from which the equilibrium thermodynamic properties ranging from 200 to 20000 K can be found for the gaseous chemical species related to planetary atmosphere. Capitelli et al. [7] presented the thermodynamic properties of the components related to the Martian atmosphere. In addition, a spectroscopic database is built by the EM2C laboratory in France [1] for radiative transfer calculations in air and CO2-N2 plasmas.

Notice that all the rovibrational energy levels for the bound and quasi-bound electronic states of diatomic molecules in previous published papers are calculated based on the Dunham expansion, which is given by [17]

\[E_{n,v,j} = h\varepsilon \sum_{i=0}^{\infty} Y_{ij} \left(v + \frac{1}{2} \right)^i J \left(J + 1 \right)^i \]

where \(Y_{ij} \) is the Dunham coefficients. For \(j=0 \), Eq. (1) reduces to the vibrational energy level, which is generally expressed as expansions of the anharmonic oscillator limit [17]

\[E_v = \sum_{i=0}^{\infty} Y_{i0} \left(v + \frac{1}{2} \right)^i = T_v + \omega_v \left(v + \frac{1}{2} \right)^2 - \omega_e X_e \left(v + \frac{1}{2} \right)^2 + \omega_e y_e \left(v + \frac{1}{2} \right)^3 + \cdots \]

and the internal rotational constant for this vibrational level can be expanded as [17]

\[B_v = \sum_{i=0}^{\infty} Y_{ij} \left(v + \frac{1}{2} \right)^i = B_v - \alpha_v \left(v + \frac{1}{2} \right) + \gamma_v \left(v + \frac{1}{2} \right)^2 + \cdots \]

Moreover, analogous power series expansions in \(v+1/2 \) are used to express the \(v \)-dependence of the other rotational constants \(D_v \) (for \(j=2 \)), \(H_v \) (for \(j=3 \)), etc. [24]. It is simple and convenient to calculate the level energies by Dunham expansion. However, the Dunham coefficients in the literature are usually fitted by lower-lying levels due to the difficulty in measuring the higher-lying levels. Hence, the Dunham coefficients are only valid for the lower-lying rovibrational levels. Thus, the higher-lying rovibrational levels calculated by the fitted Dunham coefficients maybe diverge from the exact energies, which are very important in the calculation of the partition function at high temperatures.

Inspired by the work of da Silva et al. [18], we present a more precise calculation of the rovibrational level energies for all the electronic states of N2, N2°, NO, O2, CN, C2, CO and CO° by solving the rovibrational dependence of the radial Schrödinger equation over the accurate potential curves. And the potential curves are reconstructed by combining the well-known Rydberg–Klein–Rees (RKR) method [19–21] and ab-initio calculations [26,27]. Using the same cut-off criterion, the number of the vibrational and rotational levels predicted by this method is larger than those derived from the Dunham expansion. The increment of the level number is investigated due to its importance in the partition functions. After obtaining the rovibrational level energies, we calculate the equilibrium partition functions and thermodynamic properties of N2, N2°, NO, O2, CN, C2, CO and CO°. The non-equilibrium partition functions and thermodynamic properties of these molecules in the framework of the two-temperature model are also computed and studied considering the vibrational and rotational temperatures ranging from 1000 K to 50000 K. Moreover, the spectral radiative properties of diatomic molecules in air and CO2-N2 plasmas are investigated. This paper is organized as follows. In Section 2, we briefly describe the improved approach for the energy level calculation. The method to determine the maximum vibrational and rotational quantum number is also given. In Sections 3 and 4, the equilibrium and non-equilibrium thermodynamic properties are given and discussed. In Section 5, the spectral radiative properties of diatomic molecules required for radiative transfer calculations in air and CO2-N2 plasmas are investigated. In Section 6, conclusions are drawn.
2. The computational method

2.1. The internal partition function

According to the statistical mechanics [22,23], the internal partition function of any atom or molecule in thermodynamic equilibrium can be expressed by

$$ Q_{\text{int}}(T) = \sum_{\ell} g_{\ell} \exp \left(- \frac{\ell_0 - \ell_0}{k_{\text{B}} T} \right) $$

where g_ℓ and ℓ_0 represent the degeneracy and the energy of the ℓth internal quantum level of the component under consideration, ℓ_0 refers to the energy of the lowest energy level, and k_{B} is the Boltzmann constant. For diatomic molecules, the treatment of the energy levels follows the method developed by Babou et al. [2], Jaffe [5], Capitelli et al. [7] and Herzberg [28], i.e., the energy of a specific state is split into three contributions: the electronic excitation energy $E_{\text{el}}(n)$, the rotational energy $E_{\text{rot}}(n,v,J)$ and the internal energy $E_{\text{int}}(n,v,J)$ (Nuclear spin interactions are neglected in this paper). The electronic, vibrational and rotational energy levels of a diatomic molecule are strongly coupled, and the internal partition function can be given by

$$ Q_{\text{int}}(T) = \sum_{n,v,J} \sigma \frac{\nu_{\text{max}}}{n} \left(2 - \delta_{n,0} \right) (2S + 1) \sum_{n} \sum_{f} (2f + 1) \exp \left(-\frac{\hbar c E_{n,v,J} - \ell_0}{k_{\text{B}} T} \right) $$

where n, v, J are the electronic, vibrational and rotational quantum numbers, respectively, the subscript max refers to the maximum allowable values of different internal quantum levels, h is the Planck’s constant, c is the speed of light in vacuum, the degeneracy g_ℓ in Eq. (4) includes the electronic degeneracy $(2 - \delta_{n,0})(2S + 1)$, the rotational degeneracy $(2f + 1)$ and the symmetry factor σ ($\sigma = 1$ for heteronuclear molecules and $\sigma = 1/2$ for homonuclear molecules), just as shown in Eq. (5). S is the total electronic spin angular momentum quantum number, Λ is the quantum number of the projection of the electronic orbital angular momentum on the internuclear axis, and $E_{n,v,J}$ is the energy of quantum state (n,v,J). As shown in Eq. (5), the energy $E_{n,v,J}$, the maximum vibrational and rotational quantum numbers ν_{max} and J_{max} must be determined in order to obtain the internal partition function.

2.2. Improved approach for the calculation of level energies

Numerical approach of calculating the level energies by solving the radial Schrödinger equation over the accurate potential curve proves to be more accurate, as it tries its best to rebuild the overall potential curve to its dissociation limit. The potential curve can be reconstructed by quantum chemistry methods or quasi-classical methods. Quantum chemistry methods are usually called ab-initio methods since its calculations are directly from theoretical principles, just using a few basic physical constants, without regard to experimental and empirical parameters [31,32]. These methods are computationally intensive, and the accuracy of the calculated level energies is often lower than that of level energies obtained from quasi-classical methods for the electronic states where the level energies can be experimentally retrieved. da Silva et al. [38] pointed out that the spectroscopic accuracy in the determination of the level energies by quasi-classical methods can yield uncertainties as low as $\Delta E = 10^{-3}$ cm$^{-1}$, which by far exceeds the possibilities of any ab-initio calculations. However, ab-initio methods can give credible and reliable results of higher-lying electronic states that are rarely obtained by experiments. Hence, for the higher-lying electronic states of diatomic molecules considered in this paper, the potential curves are derived from ab-initio results in the literature, which are given in Appendix A. The rest of the electronic potential curves are reconstructed by the Rydberg-Klein-Rees (RKR) [19–21] method, making use of the most up-to-date spectroscopic constants, which are also given in Appendix A.

The RKR method is a widely used first-order semiclassical inversion procedure for reconstructing the potential curve of a diatomic molecule electronic state, and the related theory is elaborated in a number of literatures and monographs [19–21,29,30]. A full derivation of the basic equations can be found in the reference [29]. The RKR method allows a step by step reconstruction of the potential curve until the corresponding experimental vibrational limit of the spectroscopic constants. Above the vibrational limit of the spectroscopic measurement, this method is no longer valid because the fitting of Dunham expansion becomes meaningless. While it is necessary to extrapolate this potential curve up to the dissociation limit in order to ensure the convergence of solving the radial Schrödinger equation. One popular method is called direct-potential-fit (DPF) analysis, which fits the RKR potential curve by a chosen theoretical potential (e.g. Morse or Lennard–Jones potential), insuring that such a potential curve exhibits a long-range behavior as it approaches the dissociation limit. As proposed by Chauveau et al. [40] and da Silva et al. [18], the RKR potential curve is extrapolated by using a repulsive function $U_{\text{DPF}}(r)$ for the shorter internuclear distance and a Hulburt and Hirschfelder potential $U_{\text{HH}}(r)$ [36] for the longer internuclear distance, which can accurately give continuous single-well potential curve. These two functions are written as [36]

$$ U_{\text{DPF}}(r) = \frac{q_1}{r_1} $$

$$ U_{\text{HH}}(r) = D_e \left[1 - e^{-a_1(r-r_s)} \right]^2 + D_i \left[b_0 a_1^3(r-r_e)^3 e^{-2b_0(r-r_e)} \right] (1 + a_2 c_2(r-r_e)) $$

where D_e and r_s refer to the dissociation energy of the electronic (relative to bottom of the potential energy curve) and the equilibrium internuclear distance, respectively, a_1, b_1, a_2, b_2 and c_2 are floating parameters that need to be adjusted to ensure continuity with the potential energy curve and they are adjusted in order that each extrapolation function fits a significant part of the extremity of the reconstructed potential energy curve, too.

In the RKR method, the key conclusions of this theory are made up of two Klein integrals (see Eqs (4) and (5) in Ref. [30]). The vibrational quantum numbers are treated as a continuous variable, in fact, the values of the vibrational quantum numbers are integers. Therefore, a much larger number of points are obtained than those obtained using integer values for a precise determination of the potential curve, resulting in the divergence of the Klein integrals at the neighborhood of the upper limit. To solve this problem, a Gauss-type quadrature method is used to obtain the potential curve near the upper limit [18]. Then, the potential curve is reconstructed with an iteration step of $\Delta V = 0.01$ until $V = 1$, and then with $\Delta V = 0.05$ until the experimental limit ν_{max} (given in Appendix A). And the Klein integrals are integrated using a 128-point Gauss-type quadrature.

Once the overall potential curve has been obtained, the rovibrational level energies can be determined by solving the rotational dependence of the radial Schrödinger equation for a given electronic state n, which is given by [37]

$$ \frac{d\psi_{n,v}(r)}{dr^2} + \frac{2\mu}{\hbar^2} \left[E_{n,v} - V(r) \right] \psi_{n,v}(r) = 0 $$

where $E_{n,v}$ is the rovibrational energy eigenvalue corresponding to the nuclear rovibrational wavefunction $\psi_{n,v}(r)$, and $V(r)$ is the effective potential curve, which is the sum of the rotationless potential and the centrifugal potential (see Eq. (12)). The Fourier
Grid Hamiltonian method proposed by Balint-Kurti and Marston [38,39] is used to resolve the level energies. The procedure uses an even number of grid points. And the Hamiltonian matrix elements are calculated using analytic formula described in Ref. [38], with the typographical correction indicated by da Silva [58]. It should be noted that the experimental values for higher levels are not available at the moment. Hence, the higher levels that corresponds to the long range potential are not supported by the experimental results. However, we can indirectly point out the accuracy of the method by the published theoretical results in the literature. Le Roy et al. [25] pointed out that the Dunham-type parameters do not yield realistic predictions outside the valid range of the data used in the analysis, while the potential function obtained from the DPF treatment yields quantum mechanical accuracy over the data region and realistic predictions of the energies and properties of unobserved higher vibrational levels. And the long range potential of this work is considered to be accurate. Subsequently, da Silva et al. [18] calculated the potential curve of the N₂ ground state with the extrapolated Hulburt and Hirschfelder potential, which is in good agreement with that calculated by Le Roy et al. Hence, the extrapolated potential by Hulburt and Hirschfelder function is accurate based on the existing theories. The vibrational level energies by solving the radial Schrödinger equation over the RKR potential curve of N₂ ground electronic state were also presented by da Silva et al. [18], who compared the vibrational level energies with those obtained by Dunham expansion (shown in Fig. 2 of Ref. [18]) and concluded that the energies of the higher-lying levels are more accurate than the ones obtained by Dunham expansion. And the asymptotic behavior of the extrapolated potential is also validated by the dissociation limit in Fig. 2 of Ref. [18]. The same results are concluded by comparing the higher-lying levels obtained from extrapolated potential with those obtained from Dunham expansion in this paper.

2.3. Approach for the calculation of the maximum vibrational and rotational quantum numbers

The considered electronic states include all observed states up to their dissociation limits, and we have also taken into account the non-observed but theoretically predicted states. The summation of Eq. (5) must include all the vibrational states up to the dissociation limit and all the rotational levels below the energy of the dissociation limit of the rotating molecule. In Section 2.2, solving the rotational dependence of the radial Schrödinger equation, we obtain the rovibrational level energies \(E_{n,J,k} \), which can be split into three contributions: the electronic excitation energy \(E_{\text{rot}}(n) \), the vibrational energy \(E_{\text{vib}}(n,\nu) \) and the rotational energy \(E_{\text{rot}}(n,\nu,J) \), given by

\[
E_{n,J,k} = E_{\text{rot}}(n) + E_{\text{vib}}(n,\nu) + E_{\text{rot}}(n,\nu,J)
\]

For a given electronic state \(n \), the maximum vibrational quantum number is determined by the following cut-off criterion [2]:

\[
E_{\text{vib}}(n,\nu) < D_v(n)
\]

where \(D_v(n) \) refers to the rotationless dissociation energy of electronic state \(n \) relative to the minimum value of its potential curve. And the value of dissociation energy (given in Appendix A) is selected from the literature. It should be noted that for a few electronic states, the value of \(E_{\text{vib}}(n,\nu) \) never exceeds the corresponding dissociation energy as the vibrational quantum number \(\nu \) becomes large. In this case, \(\nu_{\text{max}} \) is determined as the last vibrational quantum number before the derivative \(\partial E_{\text{vib}}(n,\nu)/\partial \nu \) changes its sign, just as Babou et al. [2] did.

In analogy with what was done for the vibrational quantum number, the maximum allowed value \(J_{\text{max}} \) of the rotational quantum number for each vibrational quantum number \(\nu \leq \nu_{\text{max}} \) is determined by [2]:

\[
E_{\text{rot}}(n) + E_{\text{vib}}(n,\nu,J) \leq V_j(r_{\text{max}}(J))
\]

where \(V_j(r) \) refers to the effective potential energy of the rotating molecule, and \(r_{\text{max}}(J) \) is the local maximum position of the potential curve \(V_j(r) \). Note that the rotation of diatomic molecule can also influence the dissociation energy. Specifically, the shape of potential curve is affected as the rotational quantum number increases, resulting in the increment of the \(D_v \) value. Hence, the right side of Eq. (11) is not \(D_v \) but \(V_j(r_{\text{max}}(J)) \). Under this circumstance, the bound and quasi-bound states are taken into account here. Fig. 2 shows the regions of the bound, quasi-bound and free states for the ground electronic state of CO.

Based on the classical mechanics, we must introduce an additional term in the expression of the RKR potential curve (or ab-initio potential curve in the literature) \(U(r) \) to account for the effect of centrifugal force. Thus, the effective potential curve becomes:

\[
V_j(r) = U(r) + \frac{\hbar^2 J(J + 1)}{2\mu r^2}
\]

where \(r \) is the internuclear distance of the diatomic molecule. After adding the rotational contribution to the overall reconstructed potential curve, we obtain a series of discrete potential energies versus the discrete internuclear distances for a specific \(J \) value. Then the cubic spline is used to interpolate the discrete potential energies over the discrete internuclear distances. Thus, a series of potential curves can be reconstructed for different rotational quantum numbers. For \(J=0 \), the rotationless potential is obtained. As the quantum number increases, the position of the minimum for the potential curve moves up and the dimension of the potential well decreases. When \(J \) reaches the value \(J_{\text{lim}} \), the potential curve does not exhibit a local minimum and is entirely repulsive. And there are no stable states with \(J \) larger than \(J_{\text{lim}} \). Hence, the centrifugal distortion of the potential determines the existence of the quasi-bound states above the dissociation limit of the molecule due to rotation. In order to obtain the \(J_{\text{lim}} \) value for each vibrational quantum number, the \(J_{\text{lim}} \) value must be determined, which is characterized by a negative derivative with respect to the internuclear distance. So the rotational quantum number is changed successively until the condition below is reached:

\[
\frac{\partial V_j(r)}{\partial r} < 0.
\]
Mathematically, for each j, $r_{\text{max}}(j)$ is determined by

\[
\frac{\partial V(r)}{\partial r} \bigg|_{r=r_{\text{max}}(j)} = 0,
\]

(14)

\[
\frac{\partial^2 V(r)}{\partial r^2} \bigg|_{r=r_{\text{max}}(j)} < 0.
\]

(15)

In the practical calculation, for each j, we start with a large r value (for example, $r = 0.6$ nm), then we decrease the r value ($r - \Delta r$) until the condition $V(r) - V(r - \Delta r) = 0$ (Δr is the decrement) is reached. The obtained $r_{\text{max}}(j)$ value is introduced into Eq. (11) to determine a J_{max} for each v. However, as Babou et al. [2] mentioned, for some states, a constraint must be imposed to obtain the J_{max} value, given by

\[
J_{\text{max}}(v + 1) \leq J_{\text{max}}(v)
\]

(16)

It should be noted that quasi-bound states are not really bound and their energies cannot be calculated simply by solving the Schrödinger equation in principle, but the lifetime of the quasi-bound states is very difficult to be determined by calculating resonances. Hence, the J_{max} is determined analytically in this paper. Once the maximum vibrational quantum number for each electronic state and the maximum rotational quantum number for each vibrational state have been determined, the internal partition function can be calculated using Eq. (5).

3. Equilibrium thermodynamic properties

3.1. Theoretical aspects

Once the internal partition function Q_{intr} has been obtained, it is easy to calculate all the internal thermodynamic properties of the components according to the formulae of statistical thermodynamics [23]. For 1 mol of an ideal gas at the equilibrium temperature T, the average internal energy E_{intr} is obtained from the first derivative of Q_{intr}

\[
E_{\text{intr}}(T) = RT^2 \left(\frac{\partial \ln Q_{\text{intr}}(T)}{\partial T} \right)
\]

(17)

and the internal specific heat is calculated from the second derivative of Q_{intr}

\[
C_{\text{p,intr}}(T) = \frac{\partial E_{\text{intr}}(T)}{\partial T} = R \left[2T \left(\frac{\partial \ln Q_{\text{intr}}}{\partial T} \right) + T^2 \left(\frac{\partial^2 \ln Q_{\text{intr}}}{\partial T^2} \right) \right]
\]

(18)

where R is the gas constant ($R = 0.08595$ cm$^{-1}$ K$^{-1}$ when the E_i is given by the spectroscopic level in unit of cm$^{-1}$, $R = k_B/\hbar c$).

E_{intr} and $C_{\text{p,intr}}$ are expressed as dimensionless quantities $E_{\text{intr}}(T) = E_{\text{intr}}(T)/RT$ and $C_{\text{p,intr}}(T) = C_{\text{p,intr}}(T)/R$, respectively.

Expanding the Eq. (17) and (18), the average internal energy and the internal specific heat are expressed as

\[
E_{\text{intr}}(T) = Q_{\text{intr}}(T)^{-1} \times \sum_{n}^{\text{max}} (2 - \delta_{n,0})(2S + 1) \sum_{j}^{\text{max}} \sum_{f}^{\text{max}} (2J + 1) \times \left(E_{n,v,j} - \varepsilon_0 \right) \exp \left(-\frac{E_{n,v,j} - \varepsilon_0}{RT} \right)
\]

(19)

\[
C_{\text{p,intr}}(T) = \frac{1}{RT^2} \left\{ \left(E_{n,v,j} - \varepsilon_0 \right)^2 - E_{\text{intr}}(T) \right\}
\]

(20)

where,

\[
\sum_{j}^{\text{max}} \sum_{f}^{\text{max}} (2J + 1) \times \left(E_{n,v,j} - \varepsilon_0 \right)^2 = Q_{\text{intr}}(T)^{-1} \times \sum_{n}^{\text{max}} (2 - \delta_{n,0})(2S + 1) \sum_{j}^{\text{max}} \sum_{f}^{\text{max}} (2J + 1) \times \left(E_{n,v,j} - \varepsilon_0 \right) \exp \left(-\frac{E_{n,v,j} - \varepsilon_0}{RT} \right)
\]

(21)

3.2. Results and discussions

To obtain the thermodynamic properties, it is very important to select the spectroscopic constants, which are compared with those adopted by McBride et al. [16], Capitelli et al. [7] and Babou et al. [2]. According to the work of Babou et al. [2], two points are concluded. one is that the spectroscopic constants selected include more anharmonic correction terms and rotational constants, the other is that the same rovibrational structures for high-lying electronic states as for the ground state or for the last known electronic state doesn’t need to be assumed due to the recent publications of the spectroscopic constants of these electronic states. Note that the ab-initio potential curves for some higher-lying electronic states are obtained from the literature.

The cut-off criterion, the rovibrational interaction and excited electronic states play important roles in determining the partition functions and thermodynamic properties. The cut-off criterion is related to the dissociation energy of each electronic state for a diatomic molecule. Through the solution of the rotational dependence of the radial Schrödinger equation, the rovibrational interaction is considered and the rovibrational energies for higher-lying levels are more accurate than those obtained by the Dunham expansion. All available excited electronic states (especially higher-lying electronic states that can be found in the literature) are considered in this paper. Table 1 compares the three quantities adopted in this paper with those from Refs. [2,7,16] for N_2. Theoretically, the results we obtain are more accurate, since the electronic states we selected are more detailed and the calculated level energies are more accurate for higher-lying levels at high temperatures.

Fig. 3 compares the internal partition functions and the internal specific heats in this work with those from Refs. [2,7,16] for N_2, N_2^+, NO, O$_2$, CN, C$_2$, CO and CO$^+$ diatomic molecules in the temperatures from 100 to 50000 K. The internal partition functions increase with the increasement of the temperature. The internal specific heats start from the value 1, which is due to the activation of the rotational degrees of freedom, and then the internal specific heats rapidly reach value 2, which includes the vibrational contribution from the ground electronic state. In order to analyze the effect of different number of electronic states on the internal specific heat, we calculate the contributions of the electronic ground state and the excited states to the internal specific heat of CN (shown in Fig. 4). The curve (a) in Fig. 4 denotes the internal specific heat of the ground state, which increases rapidly from the value 1 to the value 2 due to the same reasons mentioned above. The successive internal specific heats considering different numbers of electronic excited states are shown in curves (b)-(d), which show the important role of electronic excited states.

As shown in Fig. 3, the partition functions of N_2, N_2^+, NO, O$_2$, CN, C$_2$, CO and CO$^+$ agrees well with those from Ref. [16] which only gives the partition functions up to 200000 K. Moreover, our calculated partition functions of N_2, NO and O$_2$ are in excellent agreement with those from Refs. [2,7] up to 50000 K. These calculations are all based on the same number of electronic states, and the slight differences of about 5% between our results and those of Refs. [2,7] may come from the different treatment methods in calculating the level energies. For CN molecule, our calculated results are in excellent agreement with those of Ref. [2], and slight differences occur at high temperatures due to the same reason as N_2, NO and O$_2$. Our results are slightly higher than the values from Ref. [7] at high temperatures because we have considered more high-lying electronic levels that are more accurate. Similarly, the results of C_2 we obtained are slightly higher than the ones of Refs. [2,7]. For CO molecule, our results are higher than the values from Ref. [7], but lower than the values from Ref. [2] since we have considered different high-lying electronic levels. Note that the higher
Fig. 3. Comparison of the internal partition functions and the internal specific heats in this work with those from Refs. [2,7,16] for (a) N_2, (b) N_2^+, (c) NO, (d) O_2, (e) CN, (f) C_2, (g) CO, (h) CO^+. Note that the data from Ref. [16] are only fitted to 20000K.
Table 1
Comparison of the number of the electronic states, cut-off criterion and method for calculating energies adopted in this paper with those from Refs. [2,7,16] for N2.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of electronic states</td>
<td>16</td>
<td>6</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>The cut-off criterion must not exceed</td>
<td>Eq. (10) and (11)</td>
<td>×</td>
<td>Eq. (10) and (11)</td>
<td>×</td>
</tr>
<tr>
<td>Method for calculating energies</td>
<td>Improved method</td>
<td>4.27</td>
<td>Dunham expansion</td>
<td>5.17</td>
</tr>
<tr>
<td>Maximum partition function</td>
<td>3.17</td>
<td>4.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2
Percentage contributions to \(Q_{ij}(T) \) of the last \(n_{\text{max}} \)-th electronic state (PC1, for short), the last two electronic states (PC2, for short) and the last three electronic states (PC3, for short) at 10000K, 20000K, 30000K, 40000K and 50000K.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>(n_{\text{max}})</th>
<th>11</th>
<th>21</th>
<th>16</th>
<th>16</th>
<th>20</th>
<th>11</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T = 10000K)</td>
<td>0.001</td>
<td>0.01</td>
<td>0.004</td>
<td>0.000</td>
<td>0.006</td>
<td>0.000</td>
<td>0.000</td>
<td>0.017</td>
</tr>
<tr>
<td>(T = 20000K)</td>
<td>0.178</td>
<td>0.388</td>
<td>0.198</td>
<td>0.005</td>
<td>0.273</td>
<td>0.007</td>
<td>0.006</td>
<td>0.259</td>
</tr>
<tr>
<td>(T = 30000K)</td>
<td>0.422</td>
<td>0.810</td>
<td>0.500</td>
<td>0.275</td>
<td>0.691</td>
<td>0.171</td>
<td>0.012</td>
<td>0.414</td>
</tr>
<tr>
<td>(T = 40000K)</td>
<td>0.543</td>
<td>1.076</td>
<td>0.730</td>
<td>0.537</td>
<td>1.019</td>
<td>0.348</td>
<td>0.015</td>
<td>0.483</td>
</tr>
<tr>
<td>(T = 50000K)</td>
<td>0.605</td>
<td>1.245</td>
<td>0.886</td>
<td>0.786</td>
<td>1.258</td>
<td>0.526</td>
<td>0.017</td>
<td>0.518</td>
</tr>
<tr>
<td>PC2(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T = 10000K)</td>
<td>0.012</td>
<td>0.018</td>
<td>0.045</td>
<td>0.001</td>
<td>0.031</td>
<td>0.002</td>
<td>0.001</td>
<td>0.072</td>
</tr>
<tr>
<td>(T = 20000K)</td>
<td>1.768</td>
<td>0.677</td>
<td>2.042</td>
<td>0.114</td>
<td>0.986</td>
<td>0.207</td>
<td>0.062</td>
<td>0.992</td>
</tr>
<tr>
<td>(T = 30000K)</td>
<td>4.066</td>
<td>1.493</td>
<td>5.222</td>
<td>0.494</td>
<td>2.199</td>
<td>0.881</td>
<td>0.129</td>
<td>1.533</td>
</tr>
<tr>
<td>(T = 40000K)</td>
<td>5.148</td>
<td>2.052</td>
<td>7.647</td>
<td>0.980</td>
<td>3.045</td>
<td>1.770</td>
<td>0.163</td>
<td>1.760</td>
</tr>
<tr>
<td>(T = 50000K)</td>
<td>5.681</td>
<td>2.433</td>
<td>9.308</td>
<td>1.450</td>
<td>3.621</td>
<td>2.663</td>
<td>0.182</td>
<td>1.871</td>
</tr>
<tr>
<td>PC3(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T = 10000K)</td>
<td>0.020</td>
<td>0.050</td>
<td>0.052</td>
<td>0.001</td>
<td>0.045</td>
<td>0.003</td>
<td>0.054</td>
<td>0.803</td>
</tr>
<tr>
<td>(T = 20000K)</td>
<td>2.105</td>
<td>1.497</td>
<td>2.248</td>
<td>0.146</td>
<td>1.313</td>
<td>0.340</td>
<td>2.413</td>
<td>9.597</td>
</tr>
<tr>
<td>(T = 30000K)</td>
<td>4.575</td>
<td>3.050</td>
<td>5.663</td>
<td>0.627</td>
<td>2.849</td>
<td>1.422</td>
<td>4.265</td>
<td>14.146</td>
</tr>
<tr>
<td>(T = 40000K)</td>
<td>5.668</td>
<td>4.028</td>
<td>8.236</td>
<td>1.239</td>
<td>3.894</td>
<td>2.840</td>
<td>5.009</td>
<td>15.808</td>
</tr>
</tbody>
</table>

Fig. 4. Contributions of (a) the ground state, (b) the ground state and the successive 4 excited states, (c) the ground state and the successive 9 excited states, (d) the ground state and the successive 16 excited states, to the dimensionless specific heat as a function of temperature for CN.

The differences between the present specific heats and the results from Refs. [2,7,16] are also shown in Fig. 3. Larger differences can be observed near the peaks. It means that the number of electronic excited states considered has a larger impact on the maximum internal specific heats. Beyond this temperature range, our calculated internal partition functions are in good agreement with those from Refs. [2,7,16] except for NO, CN and CO molecules. However, our results are within the values from Refs. [2,7] at high temperatures for these three molecules.

Overall, different sources of thermodynamic properties for diatomic molecules at high temperatures exhibit significant discrepancies depending on the cut-off criterion, rovibrational interaction energy and the number of electronic states. The electronic excitation is more effective than high vibrational excitation of the electronic state. But the effect of the high vibrational excitation on the partition function is non-negligible at high temperatures, especially for N2, C2, CO+. Theoretically, the results we obtained are more accurate since we have selected the more detailed and accurate electronic states, and our calculated level energies are more accurate for high-lying levels at high temperatures. A full understanding of the three factors will obtain more accurate thermodynamic properties.

4. Non-equilibrium thermodynamic properties

The high-temperature flow field related to hypersonic flights is usually in thermal and chemical non-equilibrium. When dealing with practical non-equilibrium entry flows, two-temperature model (one of the multi-temperature model) is the primary choice due to its easier treatment in mathematics. Based on the two-temperature model and the rovibrational energy partitioning scheme proposed by Jaffe [5], two-temperature thermodynamic properties of diatomic molecules are studied and analyzed in this section, which can be extended to the multi-temperature model, the state-to-state model or even more accurate models.
4.1. Theoretical aspects

The general form of the diatomic level energy is given by Eq. (9), which can be expanded as:

\[E_{n,vJ} = E_{\text{el}}(n) + E_{\text{rot}}(n,v) + E_{\text{int}}(n,v,J) \]

(22)

Based on the two-temperature model, Jaffe [5] proposed two ways of splitting the rovibrational internal energy corresponding to two limiting cases, i.e., the interaction energy \(E_{\text{int}}(n,v,J) \) is assigned fully either to the vibrational energy or to the rotational energy, which are expressed as follows [5]:

\[\Delta^{\text{v}} E(v,J) = E_{\text{el}}(n,J) + E_{\text{int}}(n,v,J) \]

(23)

\[\Delta^{\text{r}} E(v,J) = E_{\text{el}}(n,v) + E_{\text{int}}(n,v,J) \]

(24)

where \(E_{\text{el}}(n,v) \) is the vibrational energy depending only on \(v \), and \(E_{\text{rot}}(n,J) \) is the part of \(E_{\text{rot}}(n,v,J) \) depending exclusively on \(J \). The corresponding two-temperature partition functions are given by [5]

\[
Q_{\text{int}}^{\text{v}}(T_v, T_r) = \sigma \sum_{n=0}^{n_{\text{max}}} (2 - \delta_{\Lambda,0}) (2S + 1) e^{-\frac{E_{\text{int}}(n,v,J)}{k_B T_v}}
\]

\[
\times \left(\sum_{j=0}^{j_{\text{max}}(n,v)} (2J + 1) e^{-\frac{\Delta^{\text{v}} E(n,J)}{k_B T_v}} \right)
\]

(25)

\[
Q_{\text{int}}^{\text{r}}(T_v, T_r) = \sigma \sum_{n=0}^{n_{\text{max}}} (2 - \delta_{\Lambda,0}) (2S + 1) e^{-\frac{E_{\text{int}}(n,v,J)}{k_B T_r}}
\]

\[
\times \left(\sum_{j=0}^{j_{\text{max}}(n,v)} (2J + 1) e^{-\frac{\Delta^{\text{r}} E(n,J)}{k_B T_r}} \right)
\]

(26)

respectively. The two-temperature internal energy \(E_{\text{int}}(T_v, T_r) \) can be given by

\[
E_{\text{int}}(T_v, T_r) = R \left[T_v^2 \frac{\partial \ln Q^{\text{int}}(T_v, T_r)}{\partial T_v} + T_r^2 \frac{\partial \ln Q^{\text{int}}(T_v, T_r)}{\partial T_r} \right]
\]

(27)

and the specific heats of vibration and rotation are respectively defined by

\[
C_{\text{p,\text{v}}}(T_v, T_r) = \frac{\partial E_{\text{int}}(T_v, T_r)}{\partial T_v}
\]

(28)

\[
C_{\text{p,\text{r}}}(T_v, T_r) = \frac{\partial E_{\text{int}}(T_v, T_r)}{\partial T_r}
\]

(29)

the vibrational and rotational specific heats depend on both \(T_v \) and \(T_r \). Here, we introduce the dimensional internal energy, which is defined by

\[
E_{\text{int}} = E_{\text{int}}(T_v, T_r) / k_B T_v
\]

(30)

For the first limiting case, the two-temperature internal energy (Eq. (27)) can be expanded as

\[
E_{\text{int}}^{\text{v}}(T_v, T_r) = \frac{1}{Q^{\text{int}}(T_v, T_r)} \times \sigma \sum_{n=0}^{n_{\text{max}}} (2 - \delta_{\Lambda,0}) (2S + 1) e^{-\frac{E_{\text{int}}(n,v,J)}{k_B T_v}}
\]

\[
\times \left(\sum_{j=0}^{j_{\text{max}}(n,v)} (2J + 1) e^{-\frac{\Delta^{\text{v}} E(n,J)}{k_B T_v}} \right)
\]

(31)

and the vibrational and rotational specific heats can be respectively extended as

\[
C_{\text{p,\text{v}}}(T_v, T_r) = \frac{1}{k_B T_v^2} \{ (E_{\text{el}}(n) + E_{\text{rot}}(n,v) - \varepsilon_0) \}
\]

\[
- (E_{\text{el}}(n) + E_{\text{rot}}(n,v) - \varepsilon_0) \times E_{\text{int}}(T_v, T_r) \}
\]

(32)

\[
C_{\text{p,\text{r}}}(T_v, T_r) = \frac{1}{k_B T_r^2} \{ (E_{\text{el}}(n) + \Delta^{\text{v}} E(n,J) - \langle \Delta^{\text{v}} E(n,J) \rangle) \times E_{\text{int}}(T_v, T_r) \}
\]

(33)

where, \(\langle \rangle \) refers to the energy in \(\langle \rangle \). The formulas of the internal energy and the internal specific heats for the second limiting case can also be obtained by similar derivation.

4.2. Results and discussions

The accuracy of the rovibrational level energies has been demonstrated by the results at equilibrium. In order to verify the accuracy of computational procedure for calculating the non-equilibrium thermodynamic properties, we calculate the vibrational specific heat of \(N_2 \) according to the first energy partitioning scheme given by Eq. (23) and compares with the results from Ref. [44]. Our calculated vibrational specific heats are slightly higher than the ones of Ref. [44], but shows similar distribution trend to Ref. [44], which validates our calculated thermodynamic properties.

Figs. 5–12 show the cloud maps of the two-temperature internal partition functions, the dimensionless internal energies, the dimensionless vibrational and rotational specific heats of \(N_2, N_2^+, \) NO, \(O_2, \) CN, \(C_2, \) CO and \(CO^+ \) diatomic molecules versus vibrational and rotational temperatures \(T_v \) and \(T_r \) for the two energy partitioning schemes defined by Eqs. (23) and (24), respectively. We limit our discussion to CN molecule, similar conclusions can be drawn for other diatomic molecules considered here. As shown in Fig. 9(a), the partition functions calculated according to the two energy partitioning schemes are very similar, the slight differences mainly come from the interaction energy \(E_{\text{inter}} \), which is generally negative. With such a remarkable feature, \(E_{\text{inter}} \) can also explain the behavior observed on the maps of the dimensionless internal energies, i.e., the values calculated by Eq. (23) are larger (lower) than the ones calculated by Eq. (24) for \(T_r \) larger (lower) than \(T_v \), which were also presented by Babou et al. [2] as shown in Fig. 9(b). Besides, the deviations between the values according to the two schemes for high \(T_v \) and low \(T_r \) are lower than the ones for high \(T_r \) and low \(T_v \). This phenomenon was also explained by Babou et al. [2] due to the higher electronic and vibrational energy contributions than the rotational ones.

Overall, the internal partition function and the dimensionless internal energy are weakly affected by the energy partitioning schemes adopted. On the contrary, the specific heat is more sensitive to the two energy partitioning schemes due to the definition by derivative of the internal energy. For the vibrational specific heats shown in Fig. 9(c), the results obtained using these two schemes appear to be qualitatively similar. By a close inspection,
Fig. 5. Contours of (a) the internal partition functions, (b) the dimensionless internal energies, (c) the dimensionless vibrational specific heat and (d) the dimensionless rotational specific heat for N₂ versus vibrational (T_v) and rotational (T_r) temperatures according to the first energy partitioning scheme (scheme I) defined by Eq. (23) and the second energy partitioning scheme (scheme II) defined by Eq. (24).

Fig. 6. Contours of (a) the internal partition functions, (b) the dimensionless internal energies, (c) the dimensionless vibrational specific heat and (d) the dimensionless rotational specific heat for N₂⁺ versus vibrational (T_v) and rotational (T_r) temperatures according to the first energy partitioning scheme (scheme I) defined by Eq. (23) and the second energy partitioning scheme (scheme II) defined by Eq. (24).

Fig. 7. Contours of (a) the internal partition functions, (b) the dimensionless internal energies, (c) the dimensionless vibrational specific heat and (d) the dimensionless rotational specific heat for NO versus vibrational (T_v) and rotational (T_r) temperatures according to the first energy partitioning scheme (scheme I) defined by Eq. (23) and the second energy partitioning scheme (scheme II) defined by Eq. (24).
Fig. 8. Contours of (a) the internal partition functions, (b) the dimensionless internal energies, (c) the dimensionless vibrational specific heat and (d) the dimensionless rotational specific heat for O_2 versus vibrational (T_v) and rotational (T_r) temperatures according to the first energy partitioning scheme (scheme I) defined by Eq. (23) and the second energy partitioning scheme (scheme II) defined by Eq. (24).

Fig. 9. Contours of (a) the internal partition functions, (b) the dimensionless internal energies, (c) the dimensionless vibrational specific heat and (d) the dimensionless rotational specific heat for CN versus vibrational (T_v) and rotational (T_r) temperatures according to the first energy partitioning scheme (scheme I) defined by Eq. (23) and the second energy partitioning scheme (scheme II) defined by Eq. (24).

Fig. 10. Contours of (a) the internal partition functions, (b) the dimensionless internal energies, (c) the dimensionless vibrational specific heat and (d) the dimensionless rotational specific heat for C_2 versus vibrational (T_v) and rotational (T_r) temperatures according to the first energy partitioning scheme (scheme I) defined by Eq. (23) and the second energy partitioning scheme (scheme II) defined by Eq. (24).
it can be found that the larger discrepancies occur in the part corresponding to high T_r and low T_v. For the rotational specific heat shown in Fig. 9(d), the major discrepancies occur in the part corresponding to high T_v and low T_r. The reasons for such discrepancies of the vibrational (rotational) specific heat can be found in the definition and in the relative importance between the vibrational (rotational) energy and the interaction energy. First, $C_{p,vib}$ ($C_{p,rot}$) strongly depends on T_v (T_r), while it weakly depends on T_r (T_v). Second, the relative importance between the vibrational (rotational) energy and the interaction energy changes with T_v and T_r. In the case of lower T_v (T_r) and higher T_r (T_v), the interaction energy becomes comparable with the vibrational (rotational) energy, leading to the different results for the two energy partitioning schemes. This phenomenon can be clearly seen by defining a variable δ, which is given by

$$\delta = |X^I - X^II|$$

(35)

where X denotes $C_{p,vib}$ or $C_{p,rot}$, the superscripts I and II refer to the first and second energy partitioning scheme, respectively. An example for CN is shown in Fig. 13. It should be noted that the rotational specific heat calculated according to the first energy partitioning scheme is negative for high T_v and low T_r. This phenomenon was also observed by Jaffe [5] and explained by Babou et al. [2], who pointed that the vibrational energy contribution to the rotational specific heat is negative. Moreover, higher rotational levels usually correspond to lower vibrational levels due to dissociation, which leads to a decrease of the average vibrational energy as T_r increases.
flights. The emission coefficient ε_v and the absorption coefficient κ_v of diatomic discrete transition are given respectively [34,35]

$$\varepsilon_v = \sum_{ul} \frac{A_{ul} \hbar c \nu_{ul} N_u f_{ul}(v - \nu_{ul})}{4 \pi}$$

(36)

$$\kappa_v = \sum_{ul} (N_l B_{ul} - N_u B_{ul}) \hbar c \nu_{ul} f_{ul}(v - \nu_{ul})$$

(37)

where A_{ul}, B_{ul} are the Einstein coefficient of the upper level u and lower level l, ν_{ul} is the wavenumber, $f_{ul}(v - \nu_{ul})$ is the spectral line shape of the transition, N_u and N_l denotes the population of the upper transition level and the lower transition level, respectively. In thermodynamic equilibrium, the population of the level can be described by a Boltzmann distribution, given by

$$N_l = \frac{N_{total} 2l + 1}{Q_{int}(T)} \exp \left(-\frac{E_{u,v,l}}{kT} \right)$$

(38)

where N_{total} is the total population of the considered molecule, g is the nuclear spin factor, and $Q_{int}(T)$ is the internal partition function. In thermodynamic non-equilibrium, when adopting three-temperature model (the electronic temperature T_e is introduced into the two-temperature model to represent the temperature of the electronic energy levels with a Boltzmann distribution), N_u is

5. Spectral radiative properties

The spectral radiative properties of the high-temperature gases are important in radiative transfer calculations for hypersonic
Moreover, the given components. Doppler systems are calculated from Planck's formula. The Planck distribution function is given by [34]

\[\text{SR} = \int_{v_1}^{v_2} k_{\nu} \tilde{\nu}^2 d\tilde{\nu} \]

where \(\tilde{\nu}^2 \) is the Planck distribution function. The results versus temperature for the given cases are compared with the calculated ones from Ref. [40] and the experimental data from Ref. [59] as shown in Fig. 14. A good agreement is observed at temperatures above 7000K. Above 7000K, our results are in good agreement with the calculated ones from Ref. [40], but lower than the experimental data from Ref. [59].

The table below shows the calculated results for CO molecule.

Table 5: Radiative Source Strength per Molecule (W sr⁻¹ molecule⁻¹) for CO Comparison with the Calculated Results

<table>
<thead>
<tr>
<th>T(K)</th>
<th>Electronic System</th>
<th>This Paper</th>
<th>Results from [33]</th>
<th>Results from [41]</th>
<th>Results from [43]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>Infrared</td>
<td>5.842E-21</td>
<td>5.83E-21</td>
<td>5.797E-21</td>
<td>5.853E-21</td>
</tr>
<tr>
<td></td>
<td>Third-positive</td>
<td>1.276E-64</td>
<td>1.26E-64</td>
<td>1.283E-64</td>
<td>1.317E-64</td>
</tr>
<tr>
<td>5000</td>
<td>Infrared</td>
<td>1.363E-19</td>
<td>1.41E-19</td>
<td>1.383E-19</td>
<td>1.371E-19</td>
</tr>
<tr>
<td></td>
<td>Fourth-positive</td>
<td>2.695E-19</td>
<td>2.75E-19</td>
<td>2.956E-19</td>
<td>2.785E-19</td>
</tr>
<tr>
<td></td>
<td>Hopfield-Birge</td>
<td>1.229E-23</td>
<td>1.23E-23</td>
<td>1.231E-23</td>
<td>4.034E-23</td>
</tr>
<tr>
<td></td>
<td>Third-positive</td>
<td>7.970E-23</td>
<td>7.57E-23</td>
<td>7.973E-23</td>
<td>1.535E-22</td>
</tr>
<tr>
<td>10000</td>
<td>Infrared</td>
<td>2.951E-19</td>
<td>3.18E-19</td>
<td>3.042E-19</td>
<td>3.009E-19</td>
</tr>
<tr>
<td></td>
<td>Fourth-positive</td>
<td>2.725E-15</td>
<td>2.67E-15</td>
<td>3.299E-15</td>
<td>2.971E-15</td>
</tr>
<tr>
<td></td>
<td>Hopfield-Birge</td>
<td>1.394E-18</td>
<td>1.40E-18</td>
<td>1.404E-18</td>
<td>2.264E-17</td>
</tr>
<tr>
<td></td>
<td>Third-positive</td>
<td>8.840E-18</td>
<td>8.77E-18</td>
<td>9.012E-18</td>
<td>2.297E-17</td>
</tr>
</tbody>
</table>
For the most electronic transition systems, discrepancies of lower than 6% have been observed between our calculations and the other results of Refs. \[33,41,43\]. The Deslandres-D’Azambuja system of C$_2$ and the Third-positive system of CO are considered the most questionable.

The analysis of the results in Section 4 shows insignificant sensitivity of the partition function and the level energy to the energy partitioning scheme employed. The aim of this section is to study the impact of the two energy partitioning schemes on the spectral radiative properties. Fig. 15 shows the relative spectral radiative intensity of N$_2$ first and second positive systems (67231 spectral bands), N$_2^+$ first negative system (2993 spectral bands), CN violet system (14291 spectral bands) and C$_2$ swan system (1936 spectral bands). The spectral ranges in these figures correspond to vibrational bands characterized by $\Delta v=0$. Almost identical results are observed between the spectra calculated using the first energy partitioning scheme and those obtained using the second energy partitioning scheme. And they are both in good agreement with the experimental results measured by da Silva \[58\], which validated our calculated partition functions and the level energies.

6. Conclusions

In this work, we have presented more accurate high-temperature equilibrium and non-equilibrium partition functions, thermodynamic and spectral radiative properties of N$_2$, N$_2^+$, NO, O$_2$, CN, C$_2$, CO and CO$^+$ using an improved calculation of the energy levels. The energy levels were obtained by solving the radial Schrödinger equation over the accurate potential curve. The potential curves of the lower-lying electronic states were reconstructed using RKR inversion procedure based on the most up-to-date spectroscopic constants, and the rest of the potential curves were obtained from the ab-initio results in the literature. In thermodynamic equilibrium, the partition functions and the specific heats of diatomic molecules considered in this paper are given and analyzed for two limiting cases, i.e., the rovibrational interaction energy is assigned fully either to the vibrational contribution or to the rotational contribution. The deviations between the two cases for both the partition functions and the average energies are within 5%. However, for vibrational (rotational) specific heats, larger discrepancies can be observed for high rotational (vibrational) temperature and low vibrational (rotational) temperature due to the effect of splitting the rovibrational interaction energy. In addition, the two-temperature thermodynamic properties can be used for non-equilibrium flow field calculations.

Finally, the radiative source strengths for diatomic molecules of equilibrium air and CO$_2$–N$_2$ plasma are calculated, which show discrepancies smaller than 6% with the data in the literature. The spectral radiative intensities for some discrete transitions of N$_2$, N$_2^+$, CN and C$_2$ molecules in thermodynamic nonequilibrium are calculated and validated by available experimental data. The results show that our models can be used to calculate the absorption and emission coefficients for the discrete radiation of high-temperature diatomic gases.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.51421063). ZQ sincerely thanks Robert J. Le Roy of university of Waterloo for providing kind guidance of RKR1 code, which is used to calculate the electronic potential curves in this paper.

Appendix A. Selected spectroscopic constants

Tables A1–A9

Table A6

Radiative source strength per molecule (W sr$^{-1}$ molecule$^{-1}$) for CO$^+$: comparison with the calculated results.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>Electronic system</th>
<th>This paper</th>
<th>Results from [33]</th>
<th>Results from [41]</th>
<th>Results from [43]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baldet-Johnson</td>
<td>1.632E - 42</td>
<td>1.79E - 42</td>
<td>1.450E - 42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First-negative</td>
<td>4.536E - 41</td>
<td>4.15E - 41</td>
<td>4.798E - 41</td>
<td>4.817E - 41</td>
</tr>
<tr>
<td>5000</td>
<td>Comet-tail</td>
<td>8.169E - 17</td>
<td>7.96E - 17</td>
<td>8.274E - 17</td>
<td>8.145E - 17</td>
</tr>
<tr>
<td></td>
<td>Baldet-Johnson</td>
<td>1.694E - 19</td>
<td>1.83E - 19</td>
<td>1.528E - 19</td>
<td>1.460E - 19</td>
</tr>
<tr>
<td></td>
<td>First-negative</td>
<td>2.875E - 18</td>
<td>2.67E - 18</td>
<td>3.168E - 18</td>
<td>3.111E - 18</td>
</tr>
<tr>
<td>10000</td>
<td>Comet-tail</td>
<td>1.492E - 15</td>
<td>1.54E - 15</td>
<td>1.672E - 15</td>
<td>1.569E - 15</td>
</tr>
<tr>
<td></td>
<td>Baldet-Johnson</td>
<td>1.137E - 16</td>
<td>1.30E - 16</td>
<td>1.240E - 16</td>
<td>1.057E - 16</td>
</tr>
<tr>
<td></td>
<td>First-negative</td>
<td>1.426E - 15</td>
<td>1.34E - 15</td>
<td>1.649E - 15</td>
<td>1.568E - 15</td>
</tr>
</tbody>
</table>

For the most electronic transition systems, discrepancies of lower than 6% have been observed between our calculations and the other results of Refs. [33,41,43]. The Deslandres–D’Azambuja system of C$_2$ and the Third-positive system of CO are considered the most questionable.
Table A2
Klein–Dunham coefficients for the selected states of the N₂⁺ molecule (all values are in cm⁻¹ except \(r_e \) in Angstrom and \(\nu_{max} \)).

<table>
<thead>
<tr>
<th>(J)</th>
<th>(\nu)</th>
<th>(i=0)</th>
<th>(i=1)</th>
<th>(i=2)</th>
<th>(D_{v})</th>
<th>(r_e)</th>
<th>(\nu_{max})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma_u^+)</td>
<td>(j=0)</td>
<td>68152.7</td>
<td>1530.25</td>
<td>12.075</td>
<td>50181.0</td>
<td>1.2755</td>
<td>6</td>
<td>[24,45]</td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>1.4799</td>
<td>1.657E – 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta_u^+)</td>
<td>(j=2)</td>
<td>5.55E – 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Pi_u^+)</td>
<td>(j=0)</td>
<td>72097.4</td>
<td>1559.26</td>
<td>11.63</td>
<td>46237.1</td>
<td>1.268</td>
<td>21</td>
<td>[24,45]</td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>1.498</td>
<td>1.66E – 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Klein–Dunham coefficients for \(\Sigma_u^+ \), \(\Pi_u^+ \), \(\Delta_u^+ \), \(\Pi_u^+ \), \(\Pi_u^+ \), \(\Sigma_u^+ \). are found in our previous publication [30].)

Table A3
Klein–Dunham coefficients for the selected states of the N₂⁺ molecule (all values are in cm⁻¹ except \(r_e \) in Angstrom and \(\nu_{max} \)).

<table>
<thead>
<tr>
<th>(\nu)</th>
<th>(i=0)</th>
<th>(i=1)</th>
<th>(i=2)</th>
<th>(D_{v})</th>
<th>(r_e)</th>
<th>(\nu_{max})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Xi_u^+)</td>
<td>(i=0)</td>
<td>25467</td>
<td>2398</td>
<td>14</td>
<td>45901</td>
<td>1.1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>2.071</td>
<td>1.4E – 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta_u^+)</td>
<td>(j=0)</td>
<td>52318.2</td>
<td>911.7</td>
<td>12.606</td>
<td>19204.5</td>
<td>1.48</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>1.113</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(The ab-initio potential curves of \(\Xi_u^+ \), \(\Delta_u^+ \), \(\Sigma_u^+ \), \(\Pi_u^+ \), \(\Pi_u^+ \), \(\Delta_u^+ \), \(\Pi_u^+ \), \(\Sigma_u^+ \). are directly selected from Ref. [46]. Klein–Dunham coefficients for \(\Sigma_u^+ \), \(\Pi_u^+ \), \(\Delta_u^+ \), \(\Sigma_u^+ \). are found in our previous publication [30].)

Table A4
Klein–Dunham coefficients for the selected states of the NO (all values are in cm⁻¹ except \(r_e \) in Angstrom and \(\nu_{max} \)).

<table>
<thead>
<tr>
<th>(\nu)</th>
<th>(i=0)</th>
<th>(i=1)</th>
<th>(i=2)</th>
<th>(i=3)</th>
<th>(D_{v})</th>
<th>(r_e)</th>
<th>(\nu_{max})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Xi_u^+)</td>
<td>(j=0)</td>
<td>38807</td>
<td>1019</td>
<td>12.8</td>
<td>14337</td>
<td>1.415</td>
<td>6</td>
<td>[2]</td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>1.1275</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Pi_u^+)</td>
<td>(j=0)</td>
<td>47950</td>
<td>1206</td>
<td>15</td>
<td>21184</td>
<td>1.3</td>
<td>4</td>
<td>[2]</td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>1.3358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta_u^+)</td>
<td>(j=0)</td>
<td>53637</td>
<td>1064.4</td>
<td>11</td>
<td>18932</td>
<td>1.415</td>
<td>4</td>
<td>[48]</td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>1.1275</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta_u^+)</td>
<td>(j=0)</td>
<td>61800</td>
<td>2394</td>
<td>20</td>
<td>10769</td>
<td>1.067</td>
<td>4</td>
<td>[24]</td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>1.982</td>
<td>2.3E – 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Xi_u^+)</td>
<td>(j=0)</td>
<td>62473.4</td>
<td>2339.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>2.003</td>
<td>1.8E – 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Xi_u^+)</td>
<td>(j=0)</td>
<td>62485.4</td>
<td>2371.3</td>
<td>16.17</td>
<td>86936</td>
<td>1.0585</td>
<td>12</td>
<td>[24]</td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>2.015</td>
<td>2.1E – 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Xi_u^+)</td>
<td>(j=0)</td>
<td>62913</td>
<td>1085.54</td>
<td>11.083</td>
<td>-.144</td>
<td>9656</td>
<td>1.3427</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>1.2523</td>
<td>2.04E – 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Pi_u^+)</td>
<td>(j=0)</td>
<td>63040</td>
<td>952</td>
<td>11.28</td>
<td>19144</td>
<td>1.412</td>
<td>8</td>
<td>[48]</td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>1.132</td>
<td>2.21E – 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Pi_u^+)</td>
<td>(j=0)</td>
<td>64077.5</td>
<td>2438.3</td>
<td>48.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>2.034</td>
<td>5.6E – 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Klein–Dunham coefficients for \(\Xi_u^+ \), \(\Pi_u^+ \), \(\Pi_u^+ \), \(\Delta_u^+ \), \(\Xi_u^+ \), \(\Pi_u^+ \), \(\Xi_u^+ \). are found in our previous publication [30].)
Table A5
Klein–Dunham coefficients for the selected states of the O2 molecule (all values are in cm⁻¹ except \(r_s \) in Angstrom and \(v_{\text{max}} \)).

<table>
<thead>
<tr>
<th>(Y_i)</th>
<th>(i=0)</th>
<th>(i=1)</th>
<th>(i=2)</th>
<th>(i=3)</th>
<th>(D_s)</th>
<th>(r_s)</th>
<th>(v_{\text{max}})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^1\Delta_u)</td>
<td>(j=0)</td>
<td>7918.1</td>
<td>1483.5</td>
<td>12.9</td>
<td>(34130)</td>
<td>1.21563</td>
<td>15</td>
<td>[24]</td>
</tr>
<tr>
<td>(j=1)</td>
<td>1.4264</td>
<td>1.71E – 2</td>
<td>(34130)</td>
<td>1.21563</td>
<td>15</td>
<td>[24]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j=2)</td>
<td>4.86E – 6</td>
<td>(1.3195)</td>
<td>1432.77</td>
<td>14</td>
<td>(28852.9)</td>
<td>1.22688</td>
<td>12</td>
<td>[24]</td>
</tr>
<tr>
<td>(j=3)</td>
<td>1.40037</td>
<td>1.82E – 2</td>
<td>(28852.9)</td>
<td>1.22688</td>
<td>12</td>
<td>[24]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j=4)</td>
<td>5.351E – 6</td>
<td>(3.3057)</td>
<td>794.29</td>
<td>12.736</td>
<td>(-0.244)</td>
<td>(5E – 4)</td>
<td>8991</td>
<td>1.5174</td>
</tr>
<tr>
<td>(j=1)</td>
<td>0.915</td>
<td>1.39E – 2</td>
<td>(8991)</td>
<td>1.5174</td>
<td>10</td>
<td>[24]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j=2)</td>
<td>7.4E – 6</td>
<td>(34.690)</td>
<td>850</td>
<td>20</td>
<td>(7358)</td>
<td>1.48</td>
<td>6</td>
<td>[24]</td>
</tr>
<tr>
<td>(C^1\Delta_u)</td>
<td>(j=0)</td>
<td>75260</td>
<td>(1957)</td>
<td>19.7</td>
<td>(22101)</td>
<td>1.104</td>
<td>3</td>
<td>[24]</td>
</tr>
<tr>
<td>(j=1)</td>
<td>1.73</td>
<td>2.5E – 2</td>
<td>(22101)</td>
<td>1.104</td>
<td>3</td>
<td>[24]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j=2)</td>
<td>(4.7E – 6)</td>
<td>(76991)</td>
<td>1927</td>
<td>19</td>
<td>(21270)</td>
<td>1.113</td>
<td>3</td>
<td>[24]</td>
</tr>
<tr>
<td>(D^1\Sigma_u^+)</td>
<td>(j=0)</td>
<td>79883</td>
<td>(2547)</td>
<td>(17478)</td>
<td>1.2</td>
<td>4</td>
<td>[24]</td>
<td></td>
</tr>
<tr>
<td>(j=1)</td>
<td>1.4638</td>
<td>(34.690)</td>
<td>850</td>
<td>20</td>
<td>(7358)</td>
<td>1.48</td>
<td>6</td>
<td>[24]</td>
</tr>
</tbody>
</table>

*The ab-initio potential curves of \(1\Pi, 2^1\Sigma_u^0, 2^3\Pi_u \), \(1\Pi_g \), \(1^3\Delta_u \), \(1^3\Delta_u \), \(2^3\Delta_u \), \(1\Phi_u \), \(1\Sigma_g^+ \) are directly selected from Ref. [49]. Klein–Dunham coefficients for \(X^2\Sigma_u^+ \), \(B^3\Sigma_u^+ \) can be found in our previous publication [30].

Table A6
Klein–Dunham coefficients for the selected states of the CN molecule (all values are in cm⁻¹ except \(r_s \) in Angstrom and \(v_{\text{max}} \)).

<table>
<thead>
<tr>
<th>(Y_i)</th>
<th>(i=0)</th>
<th>(i=1)</th>
<th>(i=2)</th>
<th>(i=3)</th>
<th>(D_s)</th>
<th>(r_s)</th>
<th>(v_{\text{max}})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^3\Delta)</td>
<td>(j=0)</td>
<td>65258.19</td>
<td>1121.76</td>
<td>14.203</td>
<td>(9428.5)</td>
<td>1.457</td>
<td>4</td>
<td>[24]</td>
</tr>
<tr>
<td>(j=1)</td>
<td>1.365</td>
<td>(6.8E – 2)</td>
<td>(9428.5)</td>
<td>1.457</td>
<td>4</td>
<td>[24]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j=2)</td>
<td>(5.8E – 6)</td>
<td>(6.8E – 2)</td>
<td>(9428.5)</td>
<td>1.457</td>
<td>4</td>
<td>[24]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The ab-initio potential curves of \(b^4\Pi, c^4\Delta, d^4\Sigma^−, h^2\Pi_u, g^2\Phi, 2^2\Sigma^–, 4\Delta, 2^1\Sigma^\pm \) are directly selected from Ref. [50]. And the ab-initio potential curves of \(a^4\Sigma^+, D^3\Pi_u, 1^1\Sigma^+, E^1\Sigma^+, F^1\Delta \) are directly selected from Ref. [51]. Klein–Dunham coefficients for \(X^2\Sigma^+ \), \(A^2\Pi_u \), \(B^3\Sigma_u^+ \) can be found in our previous publication [30].

Table A7
Klein–Dunham coefficients for the selected states of the C2 molecule (all values are in cm⁻¹ except \(r_s \) in Angstrom and \(v_{\text{max}} \)).

<table>
<thead>
<tr>
<th>(Y_i)</th>
<th>(i=0)</th>
<th>(i=1)</th>
<th>(i=2)</th>
<th>(i=3)</th>
<th>(D_s)</th>
<th>(r_s)</th>
<th>(v_{\text{max}})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^3\Pi_g)</td>
<td>(j=0)</td>
<td>22485</td>
<td>1400</td>
<td>(28552.01)</td>
<td>1.46</td>
<td>10</td>
<td>[52]</td>
<td></td>
</tr>
<tr>
<td>(j=1)</td>
<td>1.8</td>
<td>(28552.01)</td>
<td>1.46</td>
<td>10</td>
<td>[52]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^5\Sigma_g^+)</td>
<td>(j=0)</td>
<td>30474</td>
<td>1550</td>
<td>(20567)</td>
<td>1.35</td>
<td>6</td>
<td>[52]</td>
<td></td>
</tr>
<tr>
<td>(j=1)</td>
<td>1.8</td>
<td>(20567)</td>
<td>1.35</td>
<td>6</td>
<td>[52]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C^1\Pi_g)</td>
<td>(j=0)</td>
<td>39365</td>
<td>1697</td>
<td>(10565.8)</td>
<td>1.3013</td>
<td>3</td>
<td>[53]</td>
<td></td>
</tr>
<tr>
<td>(j=1)</td>
<td>17.113</td>
<td>4.3E – 2</td>
<td>(10565.8)</td>
<td>1.3013</td>
<td>3</td>
<td>[53]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E^1\Sigma_g^+)</td>
<td>(j=0)</td>
<td>55034.7</td>
<td>1671.5</td>
<td>40.02</td>
<td>(0.248)</td>
<td>(16861.2)</td>
<td>1.2529</td>
<td>4</td>
</tr>
<tr>
<td>(j=1)</td>
<td>1.793</td>
<td>(4.21E – 2)</td>
<td>(16861.2)</td>
<td>1.2529</td>
<td>4</td>
<td>[24]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j=2)</td>
<td>8.3E – 6</td>
<td>(4E – 7)</td>
<td>(16861.2)</td>
<td>1.2529</td>
<td>4</td>
<td>[24]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f^1\Sigma_g^+)</td>
<td>(j=0)</td>
<td>71045.8</td>
<td>1360.5</td>
<td>14.8</td>
<td>(39535.5)</td>
<td>1.399</td>
<td>3</td>
<td>[24]</td>
</tr>
<tr>
<td>(j=1)</td>
<td>1.448</td>
<td>0.4</td>
<td>(39535.5)</td>
<td>1.399</td>
<td>3</td>
<td>[24]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g^3\Delta)</td>
<td>(j=0)</td>
<td>10e – 6</td>
<td>(73183.6)</td>
<td>1458.06</td>
<td>(37535.5)</td>
<td>1.3579</td>
<td>5</td>
<td>[24]</td>
</tr>
<tr>
<td>(j=1)</td>
<td>1.5238</td>
<td>1.7E – 2</td>
<td>(37535.5)</td>
<td>1.3579</td>
<td>5</td>
<td>[24]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g^3\Delta_j)</td>
<td>(j=2)</td>
<td>6.6E – 6</td>
<td>(75456.9)</td>
<td>15575</td>
<td>(35124.5)</td>
<td>1.307</td>
<td>4</td>
<td>[24]</td>
</tr>
<tr>
<td>(j=3)</td>
<td>1.645</td>
<td>1.9E – 2</td>
<td>(35124.5)</td>
<td>1.307</td>
<td>4</td>
<td>[24]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The ab-initio potential curves of \(B^3\Delta_g, B^5\Sigma_g^+ \) are directly selected from Ref. [45]. And the potential curves of \(C^3\Pi_u, 1^1\Sigma_g^+, 1^3\Delta_u \) are directly selected from Ref. [54]. Klein–Dunham coefficients for \(X^2\Sigma_u^+ \), \(a^3\Pi_u, B^5\Sigma_u^+, A^3\Pi_u, c^5\Sigma_g^+, d^3\Pi_u, e^3\Pi_u, D^3\Sigma_g^+ \) can be found in our previous publication [30].
Klein-Dunham-coefficients for the selected states of the CO molecule (all values are in cm\(^{-1}\) except \(r_e\) in Angstrom and \(v_{\text{max}}\)).

\[
\begin{array}{cccccc}
V_{\text{g}} & i=0 & i=1 & i=2 & D_e & r_e & v_{\text{max}} & \text{Ref.} \\
3\Pi & j=0 & 62507.5 & 759 & 25.2 & 3548.81 & 1.78 & 5 [55] \\
 & j=1 & 9.331 & 0.0231 & & & \\
\end{array}
\]

The \(a\)-ib-initio potential curves of \(\alpha\Sigma^+\), \(\beta\Sigma^+\), \(\gamma\Sigma^+\) are directly selected from Ref. [56]. Klein-Dunham-coefficients for \(\alpha\Sigma^+\), \(\beta\Pi\), \(\beta\Sigma^+\), \(\gamma\Sigma^+\) can be found in our previous publication [30].

Klein-Dunham-coefficients for the selected states of the CO\(^+\) molecule (all values are in cm\(^{-1}\) except \(r_e\) in Angstrom and \(v_{\text{max}}\)).

\[
\begin{array}{cccccc}
V_{\text{g}} & i=0 & i=1 & i=2 & D_e & r_e & v_{\text{max}} & \text{Ref.} \\
C^\Delta & j=0 & 63012 & 1144 & 33.3 & 5626.7 & 1.396 & 4 [55] \\
 & j=1 & 1.357 & 0.024 & & & \\
\end{array}
\]

The \(a\)-ib-initio potential curves of \(\alpha\Sigma^+\), \(\Delta\Sigma^+\), \(\beta\Pi\), \(\epsilon\Sigma^+\) are directly selected from Ref. [42,57]. Klein-Dunham-coefficients for \(\Delta\Sigma^+\), \(\epsilon\Pi\), \(\epsilon\Sigma^+\) can be found in our previous publication [30].

References

[58] Lino da Silva M. Simulation des propriétés radiatives du plasmaentourant un véhicule traversant une atmosphère planétaire à vitesse hypersonique - application à la planète Mars. Université d’Orléans; 2004.